THE COMPLETE ENCYCLOPEDIA OF MINERALS

Description of over 600 Minerals from around the world

PETR NOVÁK, MILAN NOVÁK,
THE COMPLETE ENCYCLOPEDIA OF MINERALS
THE COMPLETE ENCYCLOPEDIA OF MINERALS

Description of over 600 Minerals from around the world

PETR KORBEL & MILAN NOVÁK
Explanation of the abbreviations used in the book

C = color
S = streak
L = luster
D = diaphaneity
DE = density
H = hardness
CL = cleavage
F = fracture
M = morphology
LU = luminescence
R = remark
X = crystal
XX = crystals

In the figure captions, the bigger dimension is always mentioned.

Scale of the frequency of the occurrence

- very rare
- rare
- uncommon
- abundant
- common
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elements</td>
<td>9</td>
</tr>
<tr>
<td>2. Sulphides</td>
<td>19</td>
</tr>
<tr>
<td>3. Halides</td>
<td>67</td>
</tr>
<tr>
<td>4. Oxides</td>
<td>75</td>
</tr>
<tr>
<td>5. Carbonates</td>
<td>113</td>
</tr>
<tr>
<td>6. Borates</td>
<td>131</td>
</tr>
<tr>
<td>7. Sulfates</td>
<td>137</td>
</tr>
<tr>
<td>8. Phosphates</td>
<td>155</td>
</tr>
<tr>
<td>9. Silicates</td>
<td>193</td>
</tr>
<tr>
<td>10. Organic compounds</td>
<td>281</td>
</tr>
<tr>
<td>11. Rocks, meteorites and tektites</td>
<td>285</td>
</tr>
<tr>
<td>Recommended literature</td>
<td>291</td>
</tr>
<tr>
<td>Index</td>
<td>293</td>
</tr>
</tbody>
</table>
Introduction

The ever increasing number of publications about minerals reflects a growing interest in nature. Most of those publications though only deal with a few dozen of the most common minerals or gemstones. This book fills the gap by also featuring less common and rare minerals. The authors describe over 600 mineral species and varieties, illustrated with about 750 color photographs. In choosing illustrations of particular minerals, aesthetic criteria such as size of crystal and color played a role in addition to their importance and distribution in nature. This book includes some rare minerals, known only from one locality, because they form very attractive crystals or aggregates. There are minerals known to humankind since prehistoric times such as quartz and gold, but also minerals first described quite recently like tosmanite. The photographs show well-formed and colorful crystals but many aggregates, which are more common in nature, are also included. The minerals in the book are listed according to the mineralogical system of Hugo Strunz, in his book Mineralogische Tabellen in 1978. The chemical formulae of individual minerals follow the form of Glossary of Mineral Species 1995 by M. Fleischer and J.A. Mandarino. The information is complemented in both cases with the latest knowledge from scientific literature, such as new nomenclature of amphiboles, micas and zeolites. The mineral descriptions cover the basic physical and chemical data, including chemical formula and crystal system. The data provided correspond mainly to the end-members. The less common valence of the chemical elements is marked in the chemical formula (Fe⁺, Mn²⁺, As⁺³, Mn³⁺, Pb⁺⁴). Where an element features in both valences in the mineral, they are both marked (e.g. ilvaite, braunite). The origin of individual minerals is described in detail. We chose for a relatively simplified scheme because the normal complexity cannot be described here in detail. Minerals can be distinguished as either primary (resulting directly from a solidifying of magma, crystallizing of an aqueous solution or metamorphism - recrystallization in a solid state) and secondary (resulting from alteration of the original mineral, e.g. during its oxidation or reduction under low temperature and pressure close to the surface of the Earth). Primary minerals are divided into following groups: 1. magmatic, when a mineral crystallizes directly from a melt (it includes magmatic and effusive igneous rocks, including granitic and alkaline syenite pegmatites and meteorites); 2. sedimentary, when a mineral crystallizes during a process of diagenesis or from hydrous solutions under normal temperature (clastic, organic and chemical sedimentary rocks); 3. metamorphic, when a mineral crystallizes during metamorphic processes in a solid state at a wide range of temperature and pressure (it includes regionally and contact metamorphosed rocks and skarns); 4. hydrothermal, when minerals crystallize from aqueous solutions and fluids under high to low temperatures (it includes ore and the Alpine-type veins, cavities in volcanic rocks, minerals and rocks, hydrothermally altered under high temperature, e.g. greisens). Secondary minerals are divided into following groups: 1. oxidation, when minerals result from the oxidation (weathering) of the primary minerals in the oxidation zone of ore deposits and other rocks (it includes the origin of malachite and azurite during the chalcopyrite oxidation, also the origin of secondary phosphates in granitic pegmatites during the oxidation of primary phosphates); 2. cementation, when minerals result from the reduction of the primary minerals (the origin of native copper and native silver under the reduction conditions in the cementation zone of ore deposits). This classification is very much simplified of course, because in many cases we cannot readily determine a specific origin of a particular mineral. This relates to minerals that crystallize under conditions which approximately represent a transition between separate phases of the origin, such as the magmatic or hydrothermal origins of elbaite in the pegmatite cavities; the metamorphic or hydrothermal origins of grossular in skarns; the magmatic or metamorphic origins of cordierite in migmatites; and the hydrothermal or secondary origins of some phosphates in granitic pegmatites etc.

With the localities for individual minerals we have tried to list the most important worldwide localities regardless of their recent production but we have also included recent discoveries since these may produce important mineral specimens. Where a mineral has an important use this is listed at the end of mineral description. We would like to acknowledge all who contributed in any way to the production of this book, particularly those private collectors and institutions which loaned minerals for photography. We hope those fascinated in the world of minerals and of nature will find this book a fascinating source of information. This book is dedicated to the memory of Dr. Jaroslav "venek, who was of extraordinary influence to several generations of Czech and Slovak mineralogists and mineral collectors with his enthusiasm for mineralogy and attitude to life.
1. Elements

Copper
Cu

CUBIC

Properties:
- C: light pink to copper-red, it darkens and covers green to black in air; S: red; L: metallic; D: opaque; DE: 8.9; H: 2.5 – 3; CL: none; F: hackly; M: cubic crystals and its combinations, dendritic aggregates, sheets, slabs, massive.

Origin and occurrence:
- Primary hydrothermal copper is mainly related to basic igneous rocks; it is also common as a product of supergene cementation. It is associated with cuprite, malachite, azurite, silver, chalcopyrite, bornite and other minerals. The largest accumulations of primary copper are in the Keweenaw Peninsula, Lake Superior, USA, the largest being 15 x 7 x 3m (approx. 50 x 23 x 10ft) and weighing 420 tons. Fine crystals up to 50 mm (approx. 2in) also occur there, as do calcite crystals with copper inclusions. Superb supergene copper crystals come from many localities like Tsumeb, Namibia and Chessy, France. Crystals up to 140mm (5 1/2 in) long occurred in the Ray mine and in Bisbee, Arizona, USA. Very fine spinel-law twins up to 5 cm in size and dendritic aggregates come from Mednorudnyansk, Ural mountains, Russia; crystals up to 30 mm (1 1/4in) were found in Dzezkazgan, Kazakhstan. Fine specimens of copper, associated with cuprite, azurite and malachite occurred in Rudabanya, Hungary.

Application:
- electronics, electrical engineering, ingredient in gold alloys.
Silver
Ag

CUBIC

Properties: C - silver-white, tarnishes gray to black; S - silver-white; L - metallic; D - opaque; DE - 10.5; H - 2.5 - 3; CL - none; F - hackly; M - cubic crystals, dendritic aggregates, wires, leaves, massive.

Origin and occurrence: Hydrothermal in ore veins and also of secondary cementation origin in association with acanthite, stephanite, proustite, pyrargyrite, copper and many other minerals. The best specimens of crystallized and wire silver come from Kongsberg, Norway, where wires up to 400mm (16 in) long and crystals up to 40 mm (1.5 in) in size have been found.

Beautiful specimens of wire silver with wires over 100 mm (4 in) long are known from Freiberg, Schneeberg and St. Andreasberg, Germany. Wires several cm long were also found in Pribram and Jachymov, Czech Republic. Dendritic aggregates from Batopilas, Chihuahua, Mexico, reached up to 150 mm (6 in). Crystals and aggregates of silver, grown together with copper are genetically unique in the basalt cavities in the Keweenaw Peninsula near Lake Superior, Michigan, USA. Wires, up to 100 mm (4 in) long, come also from the San Gennaro Mine in Huancavelica and Uchucchaqua, Peru. New finds of silver wires, up to 150 mm (6 in) long, have been made in Dzhezkazgan, Kazakhstan.

Application: photographic industry, jewelry, electronics.
Gold

Au

CUBIC

Properties: C – gold-yellow; S – yellow; L – metallic; D – opaque; DE – 19.3; H – 2.5-3; CL – none; F – hackly; M – octahedral and cubic crystals, skeletal and dendritic aggregates, leaves, nuggets.

Origin and occurrence: Primary hydrothermal in ore veins, also in contact metamorphic deposits and pegmatites. Placer deposits are secondary. It occurs with pyrite, arsenopyrite, quartz, sylvanite, calaverite, krennerite and other minerals. Beautiful leaves and crystals of gold found in many localities in California, USA (Colorado Quartz mine, Nigger Hill and others). Fine leaf gold comes from Rosia Montana, Romania. The best crystals, skeletal octahedra, up to 50 mm (2 in) have been found in alluvial sediments near Gran Sabana, Roraima Shield, Venezuela. Gold wires up to 110 mm (4 1/2 in) long were very rare in Ground Hog mine, Gilman, Colorado, USA. The largest known sheets of crystallized gold occurred in the Jamestown mine, California, USA, where a cavity, which yielded 49 kg (108 lb) of golden leaves, was discovered on 26.12.1992. The largest measures about 300 mm (11 4/5 in) and has about 25.79 kg (56 lb 13 oz) of gold on it. Typical aggregates of fine gold wires come from Farncomb Hill near Breckenridge, Colorado, USA. Fine crystals were also found in Berezovsk, Ural mountains and in the Lena River basin, Siberia, Russia. Fine scales and larger nuggets from placer deposits were found in Klondike, Alaska; Tiolomne County, California, USA and in Ballarat, Victoria, Australia. Fine dendritic aggregates occurred in the Hope’s Nose, Devon, UK. A unique find of leaves up to 100 mm (4 in) was made in Krepice near Vodnany, Czech Republic.

Application: practically the only source of gold as a metal; used in jewelry, electronics and medicine.

Mercury

Hg

TRIGONAL

Properties: C – tin white; L – metallic to adamantine; D – opaque; DE – 13.6; M – liquid at temperatures above -39°C (-38.2°F); R – very poisonous fumes.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, also connected with hot springs. It is associated with cinnabar, calomel and other Hg minerals. It occurred in Almaden, Spain;
Mercury, 30 mm. Socrates Mine, California, U.S.A.

Idria and Avala, Serbia; New Almaden and New Idria, California, Terlingua, Texas, USA; Dedova hora, Czech Republic and Rudnany, Slovakia as droplets and liquid cavity fillings.

Application: chemical industry, measuring instruments, metallurgy.

Moschellandsbergite

\[\text{Ag}_2 \text{Hg}_3 \]

Properties: C - silver-white; S - silver-white; L - metallic; D - opaque; DE - 13.5; H - 3.5; CL - good; F - conchoidal; M - dodecahedral crystals and their combinations, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature deposits, associated with cinnabar, tetrahedrite, pyrite and other minerals. Crystals, several mm long, were found in Moschellandsberg, Germany. They are also known from Sala, Sweden; Les Chalanches, France and Brezina, Czech Republic.

Lead

\[\text{Pb} \]

Properties: C - gray-white, tarnishes to lead-gray and gets dull; S - lead-gray; L - metallic; D - opaque; DE - 11.3; H - 1.5; CL - none; M - octahedral and cubic crystals, massive.

Origin and occurrence: Hydrothermal, also sedimentary (authigenic), associated with willemite and other minerals. The best specimens with crystals up to 40 mm (1\(\frac{5}{8}\) in) in size, come from LDngban, crystallized also from Pajsberg, Sweden. Octahedra, up to 10 mm (\(\frac{5}{8}\) in), are described from El Dorado, Gran Sabana, Venezuela. It also occurs in Franklin, New Jersey, USA and Jalpa, Zacatecas, Mexico.

Iron

\[\text{Fe} \]

Properties: C - steel-gray to black; S - gray; L - metallic; D - opaque; DE - 7.9; H - 4; CL - perfect; F - hackly; M - crystals, granular, massive.

Origin and occurrence: Terrestrial iron occurs mainly in basic rocks, but it is also known from carbonate sediments and the petrified wood. The most famous locality is Blaafjeld near Uivfag on Disko Island, Greenland, where masses up to 20 tons were found.
Chunks, weighing over 10 kg (22 lb) come from Bühl near Kassel, Germany. Impregnations of iron in dolerite occur in the Khuntukun massif and masses up to 80 kg (176 lb) are known from Ozernaya Mts., Siberia, Russia.

Platinum

Properties:
- C - steel-gray to dark gray
- S - steel-gray to silver-white
- L - metallic
- D - opaque
- DE - 21.5
- H - 4-4.5
- CL - none
- F - hackly
- M - cubic crystals, nuggets, grains and scales

Origin and occurrence: Platinum occurs in magmatic segregations, together with chromite, olivine and magnetite in ultrabasic rocks; secondary in placers. The best crystals up to 15 mm (9/16 in) come from Konder in Khabarovsk Region, small crystals, but mainly nuggets, weighing up to 11.5 kg (25 lb 5 oz) found in the Tura River basin near Turiinsk, Ural Mountains. Primary platinum is known from deposits in the vicinity of Nizhniy Tagil, Ural Mountains, Russia; from the Onverwacht mine, Bushveld, South Africa and Sudbury, Ontario, Canada. Fine smaller nuggets, weighing up to 75 g (165 lb) were found in the Trinity River sediments in California, USA and the Choco River sediments in Columbia.

Application: chemical industry, catalytic convertors, rocket industry.
Arsenic, 45 mm, Alden Island, Canada

Properties: C - tin-white, tarnishes quickly to black; SB tin-white; L - metallic; D - opaque; DE - 5.8; H - 3.5; CL - perfect; F - uneven; M - rhombohedral crystals, botryoidal aggregates, granular, massive.

Origin and occurrence: Mainly hydrothermal, together with other As minerals. It forms massive veins, up to 200 mm (7 1/4 in) thick, with botryoidal surface in Jáchymov, Czech Republic and in Freiberg, Germany. In Akatani, Japan, spherical aggregates consisting of small crystals were found. It is also known from Sacarim, Romania. Botryoidal aggregates of arsenic with leaf gold were found in the Royal Oak mine, Coromandel, New Zealand. Crystals of metamorphic origin come from Sterling Hill, New Jersey, USA.

Stibarsen, 58 mm, Atlin, Canada

Properties: C - tin-white to gray, tarnishes black; S - gray; L - metallic, sometimes dull; D - opaque; DE - 6.3; H - 3-4; CL - perfect; M - indistinct crystals, botryoidal aggregates.

Origin and occurrence: In pegmatites with antimony, stibiotantlalite and mierolite; hydrothermal in ore veins with pyrargyrite, proustite, pyrostilpnite and dycrasite. Beautiful botryoidal aggregates of stibarsen (previously labeled as allemontite), up to 100 mm (approx. 4 in) in size, come from Pribram and Trebsko, Czech Republic. Botryoidal aggregates up to 80 mm (3 1/4 in) and imperfect crystals were found in quartz veins in Atlin, British Columbia, Canada. Fine specimens occurred in a Li-bearing pegmatite near Varutrask, Sweden.

Antimony, 37 mm, New Brunswick, Canada

Properties: C - tin-white; S - gray; L - metallic; D - opaque; DE - 6.7; H - 3-3.5; CL - perfect; F - uneven; M - rhombohedral crystals, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins with silver, stibnite, stibarsen, sphalerite and other minerals; also in pegmatites. As veinlets in a pegmatite in Varutrask, Sweden. Cleavable plates, up to 50 mm (2 in) known from Torniö, Finland.

Antimony, Sb

Properties: C - tin-white; S - gray; L - metallic; D - opaque; DE - 6.7; H - 3-3.5; CL - perfect; F - uneven; M - rhombohedral crystals, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins with silver, stibnite, stibarsen, sphalerite and other minerals; also in pegmatites. As veinlets in a pegmatite in Varutrask, Sweden. Cleavable plates, up to 50 mm (2 in) known from Torniö, Finland.
Massive aggregates up to 200 mm (7 1/4 in) come from Pribram, Czech Republic. Rhombohedral crystals up to 10 mm (3/8 in) across and accumulations up to 300 mm (11 3/4 in) in size described from Lake George, New Brunswick, Canada.

Bismuth

Bi

TRIGONAL

Properties: C - silver-white, tarnishes pink; S - silver-white; L - metallic; D - opaque; DE - 9.8; H - 2-2.5; CL - perfect; M - rhombohedral crystals, granular, massive.

Origin and occurrence: It is found in pegmatites, greisens and hydrothermal in ore veins together with chalcopyrite, arsenopyrite, lollingite, nickeline, breithauptite and many other minerals. Common in pegmatites in Anjanabonoina, Madagascar. Very fine crystals, up to 20 mm (3/4 in) known from Schlema and Hartenstein, Germany. Skeletal aggregates, overgrown with other arsenides, occurred in Jáchymov, Czech Republic. Masses weighing several kg found in Bolivia (Tasna, Velaque) and Australia (Kingsgate, New South Wales). Cleavable masses up to 12 cm (4 3/4 in) described from Cobalt and Gowganda, Ontario, Canada.

Application: Bi ore.

Arsenolamprite

As

ORTHORHOMBIC

Properties: C - gray-white, it covers with a black coating; S - black; L - metallic to adamantine; D - opaque; DE - 5.6; H - 1-2; CL - perfect; M - acicular crystals, tabular and fan-shaped aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins associated with arsenic, bismuth, silver and other minerals. Its crystals and veinlets were found with Cu arsenides in Cerný dub, Czech Republic. Occurs also in Jáchymov, Czech Republic and Marienberg Germany. Found recently in Cavnic, Romania.

Graphite

C

HEXAGONAL

Properties: C - black to steel-gray; S - black to steel-gray; L - metallic, dull, earthy; D - opaque; DE - 2.3; H - 1-2; CL - perfect; M - hexagonal tabular crystals, massive.

Origin and occurrence: Metamorphic, from metamorphism of a sedimentary material with C contents: also primary magmatic. Associated with many materials, stable under conditions of the graphite origin. Crystals several cm in size known from Nordre Stromfjord, Greenland. Crystals were also found in Sterling Hill, New Jersey and Crestmore, California. USA Foliated aggregates are found in Sri Lanka (Ratagara, Galle region). Accumulations in Buckingham and Grenville, Quebec, Canada are industrially important. Also common in Shunga deposit in Karelia, Russia; in Cesky Krumlov, Netolice and Blizna, Czech Republic.

Application: metallurgy, nuclear industry, production of lubricants.
Diamond

CUBIC • •

Varieties: bort (opaque technical diamonds), balas (dark colored, spherical radial aggregates), carbonado (brown-black to black massive aggregates, up to egg sized)

Properties: C - colorless, yellow, brown, white, pink, black, red, blue, green; S - white; L - adamantine; D - transparent to translucent; DE - 3.5; H - 10; CL - perfect; F - conchoidal; M - octahedral and cubic crystals; LU - sometimes fluorescent, sometimes phosphorescent.

Origin and occurrence: Primary magmatic occurrences are limited to kimberlitic pipes, secondary occurrences to placers. Large primary deposits are known from South Africa (Premier mine, Kimberley) and Yakutia, Russia (pipes in the vicinity of Mirnyi). Primary and secondary occurrences of diamonds are located in lamproites and placers near Argyle, Western Australia, Australia. Most historical diamonds from India (Golconda), Brazil (Diamantina, Minas Gerais), Congo, Angola and Namibia were found in placer deposits. Diamonds of industrial grade always prevail over the gem quality stones. The largest gem-grade diamond ever found, the Cullinan, weighing 3106 carats, comes from the Premier mine in Kimberley, South Africa. It yielded gem rough for 104 faceted stones, the heaviest of which weighs 531 carats. The largest faceted diamond known, called Golden Jubilee, was found in the same place in 1986. It weighed 755 carats before cutting and as a finished stone it weighs 545.65 carats. The dark blue Hope (44 carats) and the green Dresden (76 carats) probably came from India. Absolutely unique red diamond, weighing 5 carats, which is at the Smithsonian Institution, Washington, DC, USA, is of unknown origin.

Application: the most popular gemstone, bort and carbonado varieties are used as abrasives.

Sulfur

ORTHORHOMBIC • • • •

Properties: C - sulfur-yellow, yellow-brown, greenish, reddish to yellowish-gray; S - white; L - resinous to greasy; D - transparent to translucent; DE - 2.1; H - 1.5-2.5; CL - imperfect; F - conchoidal to uneven; M - dipyramidal, disphenoidal and thick tabular crystals, botryoidal and stalactitic aggregates.

Origin and occurrence: Hydrothermal product of fumaroles, product of an activity of microorganisms, disintegration of sulfides and acidic chemical reactions; associated with gypsum, anhydrite, aragonite, calcite,
Selenium

TRIGONAL ● ●

Properties: C – gray to red-gray; S – red; L – metallic; D – opaque to translucent; DE – 4.8; H – 2; CL – good; M – acicular crystals, droplets of vitreous surface, felt-like aggregates.

Origin and occurrence: Secondary, resulting from alteration, fumaroles and from burning coal dumps, with sulfur, sal ammoniac and other sulfates. Also from oxidation of organic compounds in U- and V-bearing deposits of the Colorado Plateau type, associated with pyrite, zippelit and other minerals. Red needles up to 20 mm (¾ in) long come from the United Verde mine, Jerome, Arizona, USA. Black selenium needles found in burning coal dumps in Kladno and Radvanice, Czech Republic. Occurs with ores of U and V along sandstone fissures in the Peanut Mine, Bull Canyon, Colorado, USA. Occurred through volcanic activity in Vulcano, Lipari Islands, Italy.

Tellurium

TRIGONAL ● ●

Properties: C – tin-white; S – gray; L – metallic; D – opaque; DE – 6.2; H – 2-2.5; CL – perfect; M – prismatic and acicular crystals, granular, massive.

Origin and occurrence: Primary hydrothermal in low-temperature ore deposits; it originates also as secondary through the oxidation-reduction reactions of tellurides. It is associated with gold, sylvanite, albita, pyrite and other minerals. Crystals up to 30 mm (1¾ in) long are known from Balya, Turkey. Crystals up to 20 mm (¾ in) long occurred in the Au deposits Cripple Creek and Colorado City, USA. Crystals up to 10 mm (¾ in) across come from Kawazu and Suzuki, Japan. Rich cleavage masses and crystals up to 70 mm (2¾ in) long were found in Uzbekistan. Crystallized tellurium is also known from Fata Bai and Baia de Aries, Romania.

Celestite and halite. The world's best crystals come from many localities near Girgenti, Sicily, Italy (Caltanisseta, Cianciana) where they reached up to 12 cm (4¾ in) in size. Fine crystals are also known from Tarnobrzeg, Poland and Yavokskoye near Lvov, Ukraine. As a product of solfataras it occurs in many volcanically active places, like Solfatara near Pozzuoli, Italy or in sulfur lava near Shiretoku, Japan. Sulfur layers, up to 30 m (100 ft) thick, associated with salt diapirs, are located near Charles Lake, Louisiana, USA. It originates during intensive oxidation-reduction reactions of pyrite in Rio Tinto, Spain and in Kostajnik, Serbia.

Application: chemical, paper-making, rubber and leather-making industries, agriculture.

Tellurium. 1 mm xx, Zlatna, Romania

Tellurium. 1 mm xx, Zlatna, Romania
2. Sulfides

Algodonit

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Formula</th>
<th>Crystal System</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu_6As</td>
<td>Hexagonal</td>
<td>C - steel-gray to silver-white, it quickly covers with a brown coating on air; S - gray; L - metallic; D - opaque; DE - 8.7; H - 4; CL - none; F - conchoidal; M - crystals, granular, massive.</td>
</tr>
</tbody>
</table>

Origin and occurrence: Hydrothermal, mainly intimately inter-grown with other Cu arsenides. Its largest accumulations are known from Cu deposits in melaphyres in the Keweenaw Peninsula, Lake Superior, Michigan, USA. It is also known from Chile (Algodones mine near Coquimbo, Atacama). Other localities are Talmessi, Iran and Långban, Sweden.

Domeykite

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Formula</th>
<th>Crystal System</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu_3As</td>
<td>Cubic</td>
<td>C - tin-white to steel-gray, it tarnishes yellow and covers with a brown coating; S - gray; L - metallic; D - opaque; DE - 7.9; H - 3-3.5; CL - none; F - uneven; M - botryoidal aggregates, massive.</td>
</tr>
</tbody>
</table>

Origin and occurrence: Hydrothermal with copper, cuprite, algodonite and silver. Common in masses, weighing several kg, together with algodonite in the Keweenaw Peninsula, Michigan, USA. The largest accumulations are known from Talmessi and Anarak, Iran. It occurs near Copiap and Chanarcillo, Chile. Massive aggregates in cuprite up to 50 mm (2 in) come from Biloves, Czech Republic.

Allargentum

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Formula</th>
<th>Crystal System</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag_8Sb_x</td>
<td>Hexagonal</td>
<td>C - silver-white; S - gray; L - metallic; D - opaque; DE - 10.1; H - not determined; CL - none; M - small crystals, granular.</td>
</tr>
</tbody>
</table>

Origin and occurrence: Hydrothermal in the silver-bearing ore veins, associated with silver, breithauptite and dyscrasite. Crystals up to 1 mm (1/16 in) known from Hartenstein, Germany. Its intergrowths with silver ores were found in Cobalt, Ontario, Canada. It is also known from Broken Hill, New South Wales, Australia and microscopic in Rejska vein in Kutna Hora, Czech Republic.

*Sphalerite, 56 mm, Picos de Europa, Spain
Algodonite, 60 mm, Keweenaw Peninsula, U.S.A.
Domeykite, 3 mm x, Rudabanya, Hungary
Allargentum, 3 mm x, Schlema, Germany*
Dyscrasite
Ag₃Sb
Orthorhombic • •

Properties:
C – silver-white, it tarnishes yellow to black; S – silver-white; L – metallic; D – opaque; DE – 9.7; H – 3.5-4; CL – good; F – uneven; M – pyramidal and prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in the ore veins, associated with silver, stibarsen, pyrargyrite, calcite and other minerals. The best specimens come from the silver-bearing veins, cross-cutting the U deposit Haje near Pribram, Czech Republic, where prismatic crystals up to 50 mm (approx. 2 in) long and striated tabular twins were found. They are mostly embedded in stibarsen; all the specimens, appearing in the mineral shows, are etched out of matrix. Deformed crystals of completely different habit are known from St. Andreasberg, Germany. Crystals occurred also in the Consols mine in Broken Hill, New South Wales, Australia.

Chalcocite
Cu₂S

Monoclinic • • •

Properties:
C – lead-gray to black; S – lead-gray; L – metallic; D – opaque; DE – 5.8; H – 2.5-3; CL – imperfect; F – conchoidal; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Secondary as a product of the cementation zone in ore deposits. Crystals up to 10 mm (¼ in) across known from the Botallack mine.

Djurleite
Cu₃S₁₆

Monoclinic • • •

Properties:
C – lead-gray to black; S – lead-gray; L – metallic; D – opaque; DE – 5.8; H – 2.5-3; CL – none; F – conchoidal; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Secondary as a product of the cementation zone in ore deposits. Crystals up to 10 mm (¼ in) across known from the Botallack mine.
near St. Just, Cornwall, UK. Aggregates of thick acicular crystals up to 30 mm (1 1/8 in) long found in Dzhezkazgan, Kazakhstan.

It occurs in massive form in many porphyry copper deposits (Butte, Montana; Bisbee, Arizona, USA), also in Tsumeb, Namibia, together with chalcopyrite, pyrite and other minerals.

Berzelianite

\[
	ext{Cu}_2\text{Se}
\]

Cubic

- **Properties:** C - silver-white, tarnishes black; S - silver shiny; L - metallic; D - opaque; DE - 7.3; H - 2.5; CL - none; F - uneven; M - granular, massive.

- **Origin and occurrence:** Hydrothermal, together with other selenides in U, Fe and Au deposits. It is the main mineral in the selenide mineralization in Tilkerode, Germany. Grains, up to several tens of cm across, greenish tarnished, occurred together with other selenides in Bukov, Habej, Petrovice and Predborice, Czech Republic. Similar occurrence is known from near Pinky Fault near Athabasca Lake, Saskatchewan, Canada.

Berzelianite, 60 mm, Bukov, Czech Republic
Bornite

Cu₃FeS₄

Orthorhombic

Properties:
C - copper-red, tarnishes iridescent; S - gray-black; L - metallic; D - opaque; DE - 5.1; H - 3.35; CL - imperfect; F - uneven to conchoidal; M - pseudo-cubic octahedral crystals, massive.

Origin and occurrence: Magmatic, hydrothermal, sedimentary, in skarns and pegmatites together with chalcopyrite, pyrite, quartz and other minerals. Fine crystals up to 10 mm (7/32 in) across are known from Carn Brea, Cornwall, England, UK. Crystals up to 30 mm (7/16 in) come from Likasi, Shaba, Zaire. Beautiful crystals up to 40 mm (3/8 in) across were found recently together with chalcopyrite in Dzhezkazgan, Kazakhstan. Massive aggregates are common and used as Cu ore in Kipushi, Shaba, Zaire. Fine-grained, sedimentary bornite occurs in Cu-bearing shales in Mansfeld, Germany, where it forms the main ore layer. Crystals, up to 20 mm (3/4 in) in size, occurred in the Cole shaft and masses, weighing several thousands of tons, were mined in the Campbell shaft, Bisbee, Arizona, USA. **Application:** Cu ore.

Umangite

Cu₂Se₂

Tetragonal

Properties:
C - blue-black with reddish tint, tarnishes purple; S - black; L - metallic; D - opaque; DE - 6.6; H - 3; CL - imperfect; F - uneven to conchoidal; M - granular, massive.

Origin and occurrence: Hydrothermal in ore veins together with other selenides (clausthalite, berzelianite). It is common, associated with berzelianite in Tilkendorf, Germany; Sierra de Umango, Argentina and Slavkovice, Czech Republic. Larger accumulations occur in the Martin Lake mine near Athabasca Lake, Canada.
Acanthite
\[\text{Ag}_2\text{S} \]

MONOCLINIC

Properties:
- **C** – black;
- **S** – black;
- **L** – metallic;
- **D** – opaque;
- **DE** – 7.2;
- **H** – 2-2.5;
- **CL** – none;
- **F** – uneven;
- **M** – pseudo-cubic crystals, massive. It mainly occurs as paramorphs after argentite (high-temperature phase of the same composition).

Origin and occurrence: Hydrothermal in ore veins. Beautiful crystals over 50 mm (2 in) long occurred in the Himmelsfürst mine in Freiberg, in Annaberg and Schneeberg, Germany. Acellular crystals are known from Jachymov, Czech Republic. It is common in association with silver, proustite, pyrargyrite, polybasite, steinheilite, galena and other minerals in Mexico. Probably the best paramorphs after argentite up to 70 mm (2¾ in) across come from the Rayas mine, Guanajuato. Fine crystals occur in the Las Chispas mine, Arizpe, Sonora and many localities in Zacatecas, Chihuahua.

Application: important Ag ore.

Argentite
\[\text{Ag}_2\text{S} \]

CUBIC

Properties:
- **C** – black-gray, tarnishes black;
- **S** – black;
- **L** – metallic;
- **D** – opaque;
- **DE** – 7.1;
- **H** – 2-2.5;
- **CL** – imperfect;
- **F** – uneven to conchoidal;
- **M** – octahedral and cubic crystals, dendritic aggregates, massive. Stable at temperatures over 179EC (354.2°F), below this temperature there are paramorphs of acanthite after argentite.

Application: important Ag ore.
Aguilarite, 4 mm xx, Guanajuato, Mexico

Hessite
\[\text{Ag}_2\text{Te} \]

MONOCLINIC • • •

Properties: C - lead to steel-gray, tarnishes black; S - light gray; L - metallic; D - opaque; DE - 8-4; H - 2-3; CL - imperfect; F - even; M - pseudo-cubic crystal combinations, granular, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature ore veins together with calaverite, sylvanite, altaite, gold, tellurium and other sulfides. The best specimens with crystals up to 20 mm (¾ in) across (¾ in) and aggregates up to 100 mm (4 in) come from the Bote mine, Romania. Small crystals occur in the Jamestown mine, California, USA. Massive aggregates were found in Gold Hill, Colorado, USA and Moctezuma, Mexico. Aggregates, up to tens of cm² (several sq in) in size, were known in the Zavodinskii mine, Altai, Kazakhstan.

Agularite

\[\text{Ag}_4\text{SeS} \]

ORTHORHOMBIC •

Properties: C - lead-gray, tarnishes black; S - gray-black; L - metallic; D - opaque; DE - 7-7; H - 2-5; CL - none; F - hackly; M - skeletal crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, together with silver, stephanite, proustite, pearceite, calcite and quartz. The best crystallized specimens with crystals up to 30 mm (1¾ in) across come from the San Carlos mine, Guanajuato and Chontalpan, Taxco, Guerrero, Mexico. It is also known in inter-
growths with acanthite and naumannite from the
Comstock Lode, Virginia City, Nevada, USA.

Argyrodite

Orthorhombic

Properties:
- **C:** steel-gray, tarnishes black;
- **S:** gray-black;
- **L:** metallic;
- **D:** opaque;
- **DE:** 6.3;
- **H:** 2.5-3;
- **CL:** none;
- **F:** uneven to conchoidal;
- **M:** combinations of cubic crystals, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature base metal deposits, associated with Ag sulfosalts. It occurred in crystals in the Himmelsthrst mine, Freiberg, Germany. Crystals were also found in several localities in Bolivia (Atoche, Colquechaca, Potosi). Crystal measuring 60 mm (24 in) across is reported from Porco, Bolivia.

Stromeyerite

Orthorhombic

Properties:
- **C:** dark steel gray, tarnishes blue;
- **S:** steel-gray;
- **L:** metallic;
- **D:** opaque;
- **DE:** 6.3;
- **H:** 2.5-3;
- **CL:** none;
- **F:** conchoidal;
- **M:** pseudo-hexagonal tabular crystals, massive.

Origin and occurrence: Mostly secondary in the cementation zone of ore veins, associated with freibergite, bornite, chalcocite, galena and other minerals. Fine tabular crystals up to 10 mm (% in) across found in Dzhezkazgan, Kazakhstan, where pseudo-morphs of stromeyerite after silver wires also occur. Skeletal prismatic pseudo-morphs after chalcocite crystals come from Vraneice, Czech Republic. Massive aggregates are common in many deposits in Colorado, USA (Aspen; Red Mountain), Chile (Copiapo), Bolivia (Potosi) and Canada (Cobalt, Ontario).

Jalpaite

Tetragonal

Properties:
- **C:** light gray, tarnishes dark gray to iridescent;
- **S:** black;
- **L:** metallic;
- **D:** opaque;
- **DE:** 6.8;
- **H:** 2-2.5;
- **CL:** good;
- **F:** conchoidal;
- **M:** crystals, granular.

Origin and occurrence: Hydrothermal in low-temperature ore veins. Crystals up to 25 mm (1 in) across known from Jalpa, Queretaro, Mexico. Crystals up to 30 mm (% in) across come from the Caribou mine, Colorado, USA. Massive aggregates, associated with galena, sphalerite, pyrite, stromeyerite, polybasite and other minerals, occurred in Pilsbrum, Czech Republic.

Stromeyerite, 6 mm xx, Dzhezkazgan, Kazakhstan

Jalpaite, 30 mm veinlet, Pilsbrum, Czech Republic
Pentlandite. 90 mm. Sudbury, Canada

Pentlandite

\((\text{Fe},\text{Ni})_9\text{S}_8\)

Cubic

Properties: C – light bronze to red-brown; S – light bronze; L – metallic; D – opaque; DE – 5.0; H – 3.5-4; CL – none; F – conchoidal; M – crystals, massive.

Origin and occurrence: Typical magmatic liquid mineral, associated with pyrrhotite and chalcopyrite. It is common in Sudbury, Ontario, Canada, as mostly microscopic inclusions in chalcopyrite, but also as imperfect crystals. Large accumulations are known from Talnakh near Norilsk, Siberia, Russia, where it occurs together with Cu, Pt and Pd sulfides. It is also important ore in the deposit near Rustenburg, South Africa.

Application: The most important Ni ore.

Sphalerite. 70 mm. Olkus, Poland

Sphalerite

\(\text{ZnS}\)

Cubic

Varieties: cleiophane (green, yellow, orange), marmatic (black)

Properties: C – colorless, yellow, orange, green, brown, black; S – brownish, light yellow, white; L – resinous to adamantine; D – transparent, translucent, opaque; DE – 4.1; H – 3.5-4; CL – perfect; F – conchoidal; M – tetrahedral and dodecagonal crystals, botryoidal, fibrous and stalactitic aggregates, massive; LU – sometimes orange.

Origin and occurrence: Magmatic (liquid, in pegmatites); hydrothermal in low- to high-temperature deposits, skarns, hydrothermal sedimentary deposits;
rare sedimentary and metamorphic. It occurs together with galena, pyrite, chalcoprite, marcasite, fluorite, barite, quartz and other minerals. Beautiful crystals up to 100 mm (4 in) across come from Trepea, Serbia. Green and red crystals up to 100 mm (4 in) known from Cananea, Sonora, Mexico. Fine yellow crystals up to 30 mm (1 1/4 in) were common in Banskia "tiavnieca, Slovakia; similar crystals occur in Madan, Bulgaria. The most beautiful yellow, orange and red crystals up to 150 mm (6 in) across found in Picos de Europa, Santander, Spain. They are sometimes faceted. Brown crystals up to 50 mm (2 in) come from Joplin, Missouri; stalactitic aggregates up to 150 mm (6 in) long come from Galena, Illinois, USA. Perfect black, shiny crystals and twins up to 50 mm (2 in) are famous from Dalnegorsk, Russia; yellow crystals, up to 30 mm (1 1/4 in), occurred in Dzhezkazgan, Kazakhstan. Transparent crystals up to 30 mm (1 1/4 in) also found in Franklin, New Jersey, USA. Green crystals up to 100 mm (approx. 4 in) across occurred in the Big Four mine, Colorado, USA. Crystals up to 50 mm (2 in) known from the Oppu mine, Aomori, Japan.

Application: principal Zn ore.

Coloradoite

HgTe

CUBIC

Properties: C - black-gray; S - black-gray; L - metallic; D - opaque; DE - 8,1; H - 2,5; CL - none; F - uneven to conchoidal; M - granular, massive.

Origin and occurrence: Hydrothermal, associated with altaite, calaverite, krennerite, gold, pyrite and other minerals in Au-bearing veins. It was common in Cripple Creek and in the Smuggler mine, Colorado; in the Norwegian mine, California, USA. Grains, reaching up to several mm, come from Jilove, Czech Republic.

Coloradoite, 70 mm, Kalgoorlie, Australia

Chalcopyrite

CuFeS2

TETRAGONAL

Properties: C - brass-yellow, tarnishes iridescent; S - green-black; L - metallic; D - opaque; DE - 4,3; H - 3,5-4; CL - imperfect; F - uneven; M - tetrahedral crystals, botryoidal aggregates, massive.

Origin and occurrence: Magmatic, hydrothermal and sedimentary, in association with sphalerite, galena, tetrahedrite, pyrite and many other sulfides. Fine crystals up to 30 mm (1 1/4 in) across are known from Banska "tiavnieca, Slovakia and from Cavnic, Romania. Crystals up to 120 mm (4 1/4 in) across, associated with other sulfides, come from the Nikolai mine in Dalnegorsk, Russia. Beautiful crystals up to 120 mm (4 1/4 in) found in Japan (Arawaka, Osarizawa). Fine crystals reaching up to several cm occur in Peru (Huanzala, Huaron). Massive aggregates are important Cu ore in Sudbury, Ontario, Canada; Bingham, Utah; Bisbee, Arizona, USA and Rio Tinto, Spain.

Application: important Cu ore.

Chalcopyrite, 15 mm x, Ground Hog Mine, USA.
Luzonite

\[Cu_2 AsS_4 \]

TETRAGONAL

Properties: C – dark pink-brown; S – black; L – metallic; D – opaque; DE – 4.5; H – 3.5; CL – good; F – uneven to conchoidal; M – crystals, granular, massive.

Origin and occurrence: Hydrothermal in low- to medium-temperature veins, associated with enargite, tetrahedrite, sphalerite, bismuthinite, Ag sulfosalts and other minerals. Crystals up to 40 mm (15/8 in) across come from Quiruvilca; it is common in Cerro de Pasco, Peru. It is also common in the Teine mine, Hokkaido, Japan; crystals also occur in Kinkwasi, Taiwan. It is known from Bor, Serbia and Recsk, Hungary.

Stannite

\[Cu_2 FeSnS_4 \]

TETRAGONAL

Properties: C – steel-gray to black, tarnishes blue; S – black; L – metallic; D – opaque; DE – 4.5; H – 4; CL – imperfect; F – uneven; M – pseudo-octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature Sn deposits. The best specimens come from Bolivia; crystals up to 50 mm (2 in) across known from Llallagua; crystals up to 30 mm (1¼ in) from Chocaya and cross-like inter-growths from the San Jose and Itos mines near Oruro. It occurs as massive vein fillings in Carn Brea, Cornwall, UK and Cinovec, Czech Republic. It was also found in amblygonite pegmatites in Caceres, Spain and in quartz-amblygonite veins near Vevernov, Czech Republic.

Application: Sn ore.

Germanite

\[Cu_2 FeGe_4 S_8 \]

CUBIC

Origin and occurrence: Hydrothermal, often intergrown with tennantite, bornite and other minerals. It was important only in one particular place in Tsumeb, Namibia, where larger accumulations were found. Smaller occurrences are known from the Shikanai mine, Japan; small cubic crystals come from the Humboldt mine, Colorado, USA.

Tennantite

\[Cu_2 AsS_4 \]

CUBIC

Properties: C – steel-gray; S – black, brown to dark
red; L – metallic; D – opaque; DE – 4.6; H – 3-4.5; CL – none; F – conchoidal to uneven; M – tetrahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins and greisens with pyrite, calcite, dolomite, quartz and other sulfides and Cu-Pb-Zn-Ag sulfosalts. Fine crystals are known from Cornwall, UK (Wheat Jewel, Gwennap; Carn Brea). Crystals up to 150 mm (6 in) across, come from Tsumeb, Namibia. Crystals of binnite in Lengenbach, Binntal, Switzerland, up to 30 mm (1 3/16 in). Crystals up to 20 mm (7/8 in) across were found recently in Dzhczkazgan, Kazakhstan. Large masses occurred in Kipushi, Zaire. Crystals up to 25 mm (1 in) known from El Cobre, Zacatecas, Mexico. Application: Cu ore.

Tetrahedrite

Properties: C – steel-gray to black; S – black, brown; L – metallic; D – opaque; DE – 5.0; H – 3-4.5; CL – none; F – conchoidal; M – tetrahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in low- to medium temperature veins; in contact metamorphic deposits together with chalcopyrite, galena, sphalerite, pyrite, bornite, calcite, quartz and other minerals. The largest known crystals up to 25 cm (9 7/8 in) across come from Anzen and Irazein in Pyrenees, France. Common crystals several cm in size occur in Cavnic, Romania. Fine specimens with crystals up to 70 mm (2 3/4 in) across found in the Mercedes mine in Huallanca, Peru. Other Peruvian localities like Casapalca and Morococha yielded fine crystallized specimens. Fine crystals up to 20 mm (7/8 in) in size known from Pobrarn, Czech Republic. Application: ruda Cu.
Freibergite, 15 mm xx, Obecnice, Czech Republic

Freibergite

\[(\text{Ag,Cu,Fe})_2\text{(Sb,As)}_4\text{S}_3\]

Cubic

Properties:
- C: gray to black; S: black, brown to dark red; L: metallic; D: opaque; DE: 5.4; H: 3.5-4.5; CL: none; M: tetrahedral crystals, massive.

Origin and occurrence: Hydrothermal in ore deposits, associated with many sulfides and sulfosalts. It is mainly massive in the Himmelsfurst mine in Freiberg, Germany; Cobalt, Ontario, Canada and in Mount Isa, Queensland, Australia. It was a principal Ag ore in Kutná Hora, Czech Republic.

Application: Ag ore.

Wurtzite

ZnS

Hexagonal

Properties:
- C: dark red-brown, dark brown to brown-black; S: brown; L: resinous to submetallic; D: translucent to opaque; DE: 4.1; H: 3.5-4; CL: good; M: pyramidal, prismatic to thick tabular, striated crystals, concentric banded and radial aggregates.

Origin and occurrence: Hydrothermal in ore veins with sphalerite, marcasite, pyrite and other minerals. Also of low-temperature origin along the cracks of clay concretions. The best wurtzite crystals come from Bolivia; crystals up to 40 mm (1¼ in) across from Animas and crystals up to 20 mm (3/4 in) across from Llallagua and Potosi. Fine crystals up to 30 mm (1¼ in) across found in Taimakh near Norilsk, Siberia, Russia. Interesting radial aggregates, up to several cm in diameter, occurred in Peinbram, Czech Republic.

Greenockite

CdS

Hexagonal

Properties:
- C: yellow to orange, dark red; S: orange-yellow to brick-red; L: adamantine to resinous; D: opaque to translucent, DE: 4.8; H: 3.5-3.7; CL: good; F: uneven to conchoidal; M: trillings, pulverulent coatings.

Origin and occurrence: Mainly secondary as pulverulent coatings on sphalerites. It also occurs in cavities of volcanic rocks together with prehnite, zeolites and calcite. Crystals are known from ore veins in Llallagua, Bolivia. Pulverulent coatings are described from Peinbram, Czech Republic; Bleiberg, Austria and from the deposits in the Tri State region, Missouri, USA. Crystals up to 10 mm (3/8 in) occurred in the cavities of volcanic rocks near Renfrew, Scotland, UK.

Enargite

Cu$_3$As$_4$S$_4$

Orthorhombic

Properties:
- C: gray-black to black; S: gray-black;
L - metallic; D - opaque; DE - 4.4; H - 3; CL - perfect; F - uneven; M - tabular and prismatic, striated crystals, massive.

Origin and occurrence: Hydrothermal in medium-temperature, sometimes in low-temperature deposits, associated with quartz, pyrite, sphalerite, galena, bornite and other minerals. Beautiful crystals, up to 100 mm (4 in) across, come from the Luz Angelica mine in Quiruvilca; crystals up to 150 mm (6 in) across from Morococha and Cerro de Pasco, Peru. Fine crystals were found in Butte, Montana, USA and in Manccyano, Luzon, Philippines. It occurs as a principal Cu ore in several deposits (Bor, Serbia; Huaron, Peru).

Application: Cu ore.

Cubanite

Cu₂FeS₃

* Orthorhombic

Properties: C - brass-yellow to bronze; S - black; L - metallic; D - opaque; DE - 4.1; H - 3.5; CL - none; F - conchoidal; M - tabular crystals, massive.

Origin and occurrence: Magmatic in liquid deposits as inclusions in chalcopyrite, as hydrothermal in high-temperature deposits, associated with chalcopyrite, pyrite, pyrrhotite and sphalerite. The best crystals, twins, up to 40 mm (1 3/4 in) across, come from the Henderson No.2 mine, Chibougamau, Quebec, Canada. It was also described in crystals from Sudbury, Ontario, Canada and Morro Velho, Brazil. Its large accumulations are important Cu ore in Sudbury, Ontario, Canada; in Mooihoek, South Africa and in Prince William Sound, Alaska, USA.

Application: important Cu ore.
Sternbergite, 20 mm, St. Andreasberg, Germany

Sternbergite

\[\text{Ag}_2\text{FeS}_3 \]

ORTHORHOMBIC

Properties: C - golden-brown; S - black; L - metallic to adamantine; D - opaque; DE - 4.3; H - 1.5; CL - perfect; M - thin tabular pseudo-hexagonal crystals, often in rosettes and fan-shaped aggregates.

Origin and occurrence: Hydrothermal in Ag-bearing veins, associated with stephanite, acanthite, proustite, argentopyrite and other minerals. Tabular crystals up to several mm across known from Jachymov and Midiniec, Czech Republic; from St. Andreasberg, Johanngeorgenstadt, Schneeberg and Freiberg, Germany.

Pyrrhotite, 68 mm, Dalnegorsk, Russia

Pyrrhotite

\[\text{Fe}_{1-x}\text{S} \] (x = 0.08)

MONOCLINIC

Properties: C - bronze-yellow to brown, tarnishes quickly; S - dark gray-black; L - metallic; D - opaque; DE - 4.7; H - 3.5-4.5; CL - none; F - uneven to conchoidal; M - tabular, pyramidal and prismatic crystals, massive.

Origin and occurrence: Magmatic liquid in basic rocks, together with pyrite and pentlandite; in pegmatites; hydrothermal in high-temperature and metasomatic deposits; sedimentary and metamorphic. Tabular crystals up to 300 mm (11.8 in) across come from Trepea, Serbia and Dalnegorsk, Russia; prismatic crystals up to 150 mm (6 in) long found in Santa Eulalia, Chihuahua, Mexico and Chiuzbaia, Romania. Tabular crystals up to 110 mm (4.3 in) occurred in Cavnic, Romania. Large imperfect crystals, coated with wavellite, are known from Llallagua, Bolivia. Huge masses of industrial importance occur in Sudbury, Ontario, Canada; Talnakh near Norilsk, Siberia, Russia and elsewhere. Application: sometimes as Fe ore.

Argentopyrite, 60 mm, Midiniec, Czech Republic

Argentopyrite

\[\text{Ag}_2\text{FeS}_3 \]

ORTHORHOMBIC

Properties: C - gray-white, tarnishes iridescent; S - gray; L - metallic; D - opaque; DE - 4.3; H - 3.5-4; CL - none; F - uneven; M - thick tabular pseudo-hexagonal crystals, granular.

Origin and occurrence: Hydrothermal in ore veins, associated with proustite, pyrrargyrite, stephanite, sternbergite, dolomite, quartz and other minerals. Crystals up to 5 mm (0.2 in) across come from Jachymov and Midiniec, Czech Republic; it is also known from Schlema, Freiberg and Schneeberg, Germany and from Colquechaca, Bolivia.

Pyrrhotite, 68 mm, Dalnegorsk, Russia

Pyrrhotite

\[\text{Fe}_{1-x}\text{S} \] (x = 0.08)

MONOCLINIC

Properties: C - bronze-yellow to brown, tarnishes quickly; S - dark gray-black; L - metallic; D - opaque; DE - 4.7; H - 3.5-4.5; CL - none; F - uneven to conchoidal; M - tabular, pyramidal and prismatic crystals, massive.

Origin and occurrence: Magmatic liquid in basic rocks, together with pyrite and pentlandite; in pegmatites; hydrothermal in high-temperature and metasomatic deposits; sedimentary and metamorphic. Tabular crystals up to 300 mm (11.8 in) across come from Trepea, Serbia and Dalnegorsk, Russia; prismatic crystals up to 150 mm (6 in) long found in Santa Eulalia, Chihuahua, Mexico and Chiuzbaia, Romania. Tabular crystals up to 110 mm (4.3 in) occurred in Cavnic, Romania. Large imperfect crystals, coated with wavellite, are known from Llallagua, Bolivia. Huge masses of industrial importance occur in Sudbury, Ontario, Canada; Talnakh near Norilsk, Siberia, Russia and elsewhere. Application: sometimes as Fe ore.
Nickeline
NiAs

HEXAGONAL • • • •

Properties: C - light copper-red, tarnishes gray to black; S - light brown-black; L - metallic; D - opaque; DE - 7.8; H - 5-5.5; CL - none; F - conchoidal; M - stratified crystals, botryoidal and dendritic aggregates, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature ore veins with skutterudite, nickeline-skutterudite, safflorite, rammelsbergite and other minerals. Also magmatic in norites and peridotites. Crystals up to 15 mm (0.6 in) across come from Pohla; small crystals were found in Richelsdorf, Germany. Fine massive aggregates and small crystals occurred in Bou Azzer, Morocco. Huge accumulations are known in Cobalt and Gowganda, Ontario, Canada.

Application: Ni ore.

Breithauptite
NiSb

HEXAGONAL • •

Properties: C - light copper-red, purplish; S - red-brown; L - metallic; D - opaque; DE - 8.6; H - 5.5; CL - none; F - conchoidal to uneven; M - thin tabular crystals, dendritic aggregates, massive.

Origin and occurrence: Magmatic, hydrothermal and metamorphic, associated with silver, nickeline, cobaltite and other sulfides. It occurs inter-grown with pyrrhotite and pentlandite in magmatic liquid deposit Vlakfontein, South Africa. It is common in hydrothermal veins in Cobalt, Ontario, Canada; also known from Sarrabus, Sardinia, Italy and St. Andreasberg, Germany.
Millerite

NiS

TRIGONAL

Properties: C - light brass-yellow to bronze, tarnishes iridescent; S - greenish-black; L - metallic; D - opaque; DE - 5.4; H - 3-3.5; CL - perfect; F - uneven; M - acicular crystals, cleavable masses, aggregates of parallel inter-grown crystals with velvety surface.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, also as a product of decomposition of Ni sulfides. It is associated with pyrrhotite, ankerite, whewellite, barite and other minerals.

Alabandine

MnS

CUBIC

Properties: C - black; S - green; L - submetallic; D - opaque; DE - 4.1; H - 3.5-4; CL - perfect; F - uneven; M - cubic and octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with rhodochrosite, calcite, galena, sphalerite, pyrite and other minerals. Crystals up to 20 mm (¾ in) across together with granular aggregates are relatively common in Romania (Saarim, Baia de Aries, Rojia Montana). Crystals are also known from the Queen of the West mine, Colorado and from the Lucky Cuss mine, Tombstone, Arizona, USA.
Galena
PbS

CUBIC • • • • •

Varieties: steinmannite

Properties: C - lead-gray; S - lead-gray; L - metallic; D - opaque; DE - 7,6; H - 2,5; CL - perfect; F - conchoidal; M - cubic crystals and their complex combinations, tabular crystals, skeletal aggregates, massive.

Origin and occurrence: Magmatic, hydrothermal, metamorphic, very rare sedimentary, associated with sphalerite, chalcopyrite, pyrite, quartz and other minerals. Large crystals up to several tens of cm in size come from many localities in the USA. (Joplin, Missouri; Galena, Kansas; Picher, Oklahoma; Sweetwater mine, Missouri). Beautiful, often skeletal crystals or spinel-law twins up to 200 mm (7¾ in) across known from the Nikolai mine in Dalnegorsk, Russia. Fine crystals occur also in Naica, Chihuahua, Mexico. Famous complicated combinations of crystals were found in Neudorf, Germany. Octahedral crystals up to 10 mm (⅜ in) (steinmannite variety) were common in Pribram, Czech Republic. Beautiful specimens with cubes up to several cm across come from Madan, Bulgaria; spinel-law twins occurred in Herșa, Romania.

Application: the most important Pb ore.

Clausthalite
PbSe

CUBIC • • • •

Properties: C - lead-gray, bluish; S - gray-black; L - metallic; D - opaque; DE - 8,3; H - 2,5 - 3; CL - good; F - granular; M - granular, massive.

Origin and occurrence: Hydrothermal in ore veins with a low S content, together with berzelianite, umangite, uraninite and other minerals. It occurs as massive aggregates in calcite veins with other selenides in Clausthal and Tilkeode, Germany. It is similar in Skirikerum, Sweden; common in the U deposits in Predborice, Bukov and Zlatkov, Czech Republic.
Altaite, 65 mm, Stania, Romania

Altaite

PbTe

CUBIC

Properties: C - tin-white to yellowish, tarnishing to bronze; S - black; L - metallic; D - opaque; DE - 8.5; H - 3; CL - perfect; F - conchoidal; M - cubic and octahedral crystals, massive.

Miargyrite, 20 mm, Kutna Hora, Czech Republic

Origin and occurrence: Hydrothermal in vein Au deposits, associated with other tellurides, galens and other minerals. Crystals up to 20 mm (¾ in) across are known from the Revenge mine, Colorado, USA. It is massive with aguilarite in Kalgoorlie, Western Australia, Australia. It is relatively common with other tellurides in Sacarinb, Romania; in the Zavodinskii mine, Altai, Russia and in Zod near Sevan Lake, Armenia.

Miargyrite

AgSbS$_2$

MONOCLINIC

Properties: C - black to steel-gray; S - cherry-red; L - metallic, adamantine; D - opaque; DE - 5.5; H - 2.5; CL - imperfect; F - conchoidal; M - thick tabular, striated crystals, massive.

Origin and occurrence: Hydrothermal in low-temperature ore veins, together with proustite, pyrargyrite, polybasite, silver, quartz and other minerals. Fine crystals, up to 10 mm (¾ in) across, occurred in Pribram and Kutna Hora, Czech Republic; in Braunsdorf and Freiberg, Germany. It is also known from many localities in Bolivia (Tatapi, Oruro - 10 mm (¾ in) crystals, Potosi) and Mexico (Sombrerete, Catorce). It was also found in Hiendelaencina, Guadalajara, Spain.

Application: Ag ore.

Franckeite

(Pb,Sn)$_4$FeSn$_2$Sb$_4$S$_{14}$

TRICLINIC

Properties: C - gray-black; S - gray-black; L - metallic; D - opaque; DE - 5.9; H - 2.5-3; CL -

Franckeite, 30 mm, Oruro, Bolivia
Cylindrite, 50 mm, Poopo, Bolivia

Crystals up to 50 mm (2 in) long come from the Trinacria and Santa Cruz mines near Poopo, Bolivia. It was also reported from the Smirnovsk deposit, Transbaikalia, Russia.

Cinnabar

Hg$_2$S

TRIGONAL

Properties: C - red to brownish-red; S - crimson; L - adamantine to metallic, also dull; D - opaque; DE - 8.2; H - 2.5; CL - perfect; F - conchoidal to uneven; M - rhombohedral, thick tabular and prismatic crystals, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, associated with realgar, mercury, pyrite, marcasite and other minerals. The world's best specimens with crystals up to 70 mm (2.75 in) across are known from many localities in China (Hunan and Guizhou provinces). Fine shiny crystals up to 10 mm (0.4 in) across come from Nikitovka, Ukraine and in Khaidarkan, Kyrgyzstan. Crystals up to 30 mm (1.2 in) also found in Monte Amiata and Rippa near Seravezza, Italy. Its massive aggregates are an important Hg ore in Alchar, Macedonia; Almaden, Spain and elsewhere.

Application: the most important Hg ore.

Cylindrite

Pb$_2$Sn$_4$Fe$_5$Sb$_2$S$_{14}$

TRICLINIC

Properties: C - lead-gray to black; S - black; L - metallic; D - opaque; DE - 5.4; H - 2.5; CL - perfect; M - cylindrical, conical and spherical crystal aggregates, massive.

Origin and occurrence: Hydrothermal in Sn-bearing veins with franckeite, stannite, cassiterite, galena and other minerals. World famous specimens with crystals up to 50 mm (2 in) long come from the Trinacria and Santa Cruz mines near Poopo, Bolivia.
Covellite. 65 mm. Butte, U.S.A.

Covellite

CuS

HEXAGONAL • • •

Properties: C – indigo-blue, tarnishing iridescent; S – lead-gray; L – submetallic to resinous; D – opaque; DE – 4.6; H – 1.5-2; CL – perfect; F – uneven; M – hexagonal tabular crystals, massive.

Origin and occurrence: Rare hydrothermal; mainly secondary in the oxidation zone of ore deposits, associated with chalcopyrite, chalcocite, djurleite, bornite and other minerals. Tabular crystals up to 30 mm (1¼ in) across are known from Butte, Montana and Summitville, Colorado, USA; also from Sarrabus, Sardinia, Italy. Massive aggregates are common in Bor, Serbia; Bisbee, Arizona, USA and elsewhere.

Application: Cu ore.

Linneite

Co$^{2+}$Co$^{3+}$_2S$_4$

CUBIC • • •

Properties: C – light gray to steel-gray; S – black-gray; L – metallic; D – opaque; DE – 4.9; H – 4.5-5.5; CL – imperfect; F – conchooidal; M – octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins and metamorphic deposits, together with chalcopryite, pyrrhotite, millerite, bismuthinite and sphalerite. The best crystals up to 30 mm (1¼ in) across come from the Kilcmbe mine, Uganda. Crystals are also known from Musonoi, Shaba, Zaire; Mhsen, Germany; siderite concretions in Kladno, Czech Republic and from the Bastnas mine near Riddarhyttan, Sweden.

Carrolite

Cu(Co,Ni)$_2$S$_4$

CUBIC • • •

Properties: C – light to steel-gray, tarnishing red-purple; S – gray; L – metallic; D – opaque; DE – 4.8; H – 4.5-5.5; CL – imperfect; F – conchooidal to uneven; M – octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with linneite, chalcopryite and other minerals. It is a principal Co ore in deposits in Zaire. Beautiful crystals up to 20 mm (¾ in) across are known from the M’Sesa mine near Kambove, Kolwezi and from Camoto, Shaba.

Application: Co ore.

Carrolite. 8 mm x. Kambove, Zair
Stibnite

\[\text{Sb}_2\text{S}_3 \]

Orthorhombic

Properties: C – steel-gray, tarnishing iridescent or black; S – lead-gray; L – metallic; D – opaque; DE – 46; H – 2; CL – perfect; F – conchoidal to uneven; M – thick to thin prismatic crystals, thin needles, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature ore veins with quartz and gold, the other associated minerals are rare (arsenopyrite, berthierite, gudmundite, antimony). The largest known stibnite crystals occurred in the Ichinokawa mine, Shikoku, Japan, where they were up to 60 cm (24 in) long. Similar sized crystals were found recently in several localities in China (the Xikuangshan mine, Hunan). Crystals up to 200 mm (7.9 in) across come from Manhattan, Nevada, USA. Beautiful crystals are known from Romania; long prismatic ones with barite crystals are prevalent in Baia Sprie, clusters of thin needles come from Herja and thick prismatic crystals from Biau. Perfect druses of crystals up to 150 mm (6 in) long, associated with purple fluorite crystals, barite and calcite, occurred in Kadamzha, Kyrgyzstan. Beautiful druses of stibnite crystals with quartz come also from Kremnica, Slovakia. Also Kostajnik, Serbia and La Lucette, France yielded fine crystals in the past.

Application: Sb ore.
Bismuthinite

\[\text{Bi}_2\text{S}_3 \]

Orthorhombic

Properties:
- C - lead-gray to tin-white, tarnishing yellow and iridescent
- S - lead-gray
- L - metallic
- D - translucent to opaque
- DE - 6.8
- H - 2.5-3.5
- CL - perfect
- F - uneven
- M - thick prismatic to acicular, striated crystals, fibrous aggregates, massive

Origin and occurrence:
- Hydrothermal in ore deposits; also in recent volcanic exhalation deposits, associated with bismuth, arsenopyrite, stannite, galena and other minerals.
- The world's best crystals over 50 mm (2 in) long, come from Bolivia (Tasna; Huanuni; Llallagua).
- Fine crystals were also found in Redruth, Cornwall, UK. Rich finds were made in Biggenden, Queensland, Australia.
- Interesting crystals are known from Spind, Norway.

Application:
- Bi ore

Kermesite

\[\text{Sb}_2\text{S}_3\text{O} \]

Triclinic

Properties:
- C - cherry-red
- S - brown-red
- L - adamantine to submetallic
- D - translucent to opaque
- DE - 4.7
- H - 1.5-2.5
- CL - perfect
- M - acicular crystals, radial aggregates

Origin and occurrence:
- Secondary, as a result of a stibnite oxidation in Sb deposits, associated with stibnite, antimony, senarmontite, valentinite and stibiconite.
- Famous specimens with needles up to 100 mm (4 in) long, in radial aggregates, come from Pezinok and Pernák, Slovakia. Crystals up to 50 mm (2 in) long found in the Globe and Phoenix mines, Zimbabwe.
- It is also known from Bolivia (San Francisco mine, Poopo; Oruro) and Braunsdorf, Germany.
Tetradymite
\(\text{Bi}_2 \text{Te}_2 \text{S} \)

TRIGONAL • • •

Properties: C – light steel-gray, tarnishing dark to iridescent; S – light steel-gray; L – metallic; D – opaque; DE = 7.3; H = 1.5-2; CL – perfect; M – pyramidal crystals, curved bladed aggregates, massive.

Origin and occurrence: Hydrothermal in medium- and high-temperature Au deposits; also in contact metamorphosed deposits, together with gold, hessite, calaverite, pyrite and other minerals. Crystals up to 10 mm (\(\frac{5}{4}\) in) across are known from Zupkov, Slovakia. It is common in Colorado (Red Cloud) and in California (Carson Hill), USA. It occurs with gold in skarns in Bârja Bihorului, Romania.

Sylvanite
\(\text{(Au,Ag)}_2 \text{Te}_4 \)

MONOCLINIC • • •

Properties: C – steel-gray to silver-white, tarnishing to yellow; S – steel-gray to silver-white; L – metallic; D – opaque; DE = 8.2; H = 1.5-2; CL – perfect; F – uneven; M – short prismatic to thick tabular crystals, skeletal aggregates, granular.

Origin and occurrence: Hydrothermal in low-temperature ore veins, also in medium- and high-temperature deposits as one of the latest minerals, associated with gold, calaverite, hessite, krennerite and other minerals. The best specimens come from Sacarimb and Baia de Aries, Romania, where it occurs as skeletal crystals and aggregates. Crystals were also found in Cripple Creek, Colorado, USA: crystals up to 10 mm (\(\frac{5}{4}\) in) across come from the Emperor mine, Viti Levu, Fiji.

Nagyagite
\(\text{Pb}_5 \text{Au}(\text{Te,Sn})_4 \text{S}_8 \)

TETRAGONAL • •

Properties: C – black-gray; S – black-gray; L – metallic; D – opaque; DE = 7.5; H = 1.5; CL – perfect; F – uneven; M – thin tabular to foliated crystals, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with altaite, arsenic, gold, rodochrosite and other minerals. Foliated crystals up to 40 mm (\(\frac{17}{4}\) in) across come from Sacarimb and Baia de Aries, Romania. Fine specimens were also found in Tavua, Viti Levu, Fiji and in the Sylvia mine, Tararu Creek, New Zealand. It also occurred in Gold Hill and Cripple Creek, Colorado, USA and in Kalgoorlie, Western Australia, Australia.
Krennerite

\(\text{AuTe}_2 \)

ORTHORHOMBIC • •

Properties:
C - silver-white to brass-yellow; S - silver-white; L - metallic; D - opaque; DE - 8.9; H - 2.5-3; CL - perfect; F - conchoidal to uneven; M - short prismatic, striated crystals, massive.

Origin and occurrence: Hydrothermal in gold-bearing veins, associated with gold, tellurium, pyrite, quartz and other tellurides. Crystals up to 20 mm (¾ in) across found in Tavua, Viti Levu, Fiji. Small crystals occurred in Sacarimb and Baia de Arieş, Romania and in Cripple Creek, Colorado, USA.

Application: Au ore.

Calaverite

\(\text{AuTe}_2 \)

MONOCLINIC • • • • •

Properties:
C - brass-yellow to silver-white; S - greenish; L - metallic; D - opaque; DE - 9.3; H - 2.5-3; CL - none; F - uneven to conchoidal; M - bladed and short prismatic, striated crystals, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature Au-bearing veins, sometimes in medium- and high-temperature deposits, associated with coloradoite, altaite, krennerite and other tellurides. It is common in the Mother Lode in California (Carson Hill). It is important, together with heisite in Cripple Creek. Crystals up to 10 mm (¼ in) across come from the Cresson mine, Colorado, USA. It is also known from several mines near Kirkland Lake, Ontario, Canada.

Application: Au ore.

Pyrite

\(\text{FeS}_2 \)

CUBIC • • • • • •

Properties:
C - light brass-yellow, tarnishing iridescent and darkens; S - green-black to brown-black; L - metallic; D - opaque; DE - 5.0; H - 6.5-6.8; CL - imperfect; F - conchoidal to uneven; M - combinations of cubic crystals, striated, stalactitic and spherical aggregates, massive.

Origin and occurrence: Magmatic segregations in basic rocks with pyrrhotite and pentlandite, in pegmatites and skarns; hydrothermal in porphyry and vein deposits together with other sulfides; hydrothermal sedimentary, sedimentary and metasomarhic. Magmatic segregations are known from Sudbury, Ontario, Canada and Merensky Reef, Transvaal, South Africa. Large crystals up to 200 mm (7½ in) across are known from Rio Marina, Elba, Italy. Fine octahedra come from Llallagua, Bolivia. Crystals, up to 120 mm (4¾ in) across, were found in Bingham and Park City, Utah, USA. Crystals up to 150 mm (6 in) are known from Huanzala and Quiruvilca, Peru. The largest pyrite deposit is Rio Tinto, Spain, where fine-grained pyrite formed accumulations about 1 billion tons. Beautiful cubes up to 80 mm (3¼ in) come from Navajun, Spain. Large deformed crystals

Calaverite, 21 mm, Nagyag, Romania
Pyrite, 74 mm. Navajun, Spain

Pyrite, 135 mm. Washington, U.S.A.

up to 200 mm (7 3/4 in) across occurred in the Samo mine near Hnus'ta, Slovakia. Interesting, complex combinations of crystals found in Nanisivik, on an edge from Climax, Colorado, USA.

Application: production of sulfuric acid.

Hauerite

MnS₂

CUBIC

Properties: C – red-brown to brown-black; S – brown-red; L – metallic to adamantine; D – opaque; Dₚ – 3.44; H – 4; CL – perfect; F – uneven to conchoidal; M – octahedral crystals and their combinations, spherical aggregates.

Origin and occurrence: Low-temperature sedimentary mineral, limited to clays with high S contents. The best crystals up to 50 mm (2 in) across come from the Destricelea mine near Raddusa, Sicily, Italy. Crystals up to 25 mm (1 in) and their aggregates are known from Viglasska Huta (former Kalinka) near Zvolen, Slovakia. Crystals up to 15 mm (5/8 in) across occur in Tarnobrzeg, Poland. Also found with sulfur, gypsum, realgar and calcite in the salt domes near High Island, Texas, USA.

Hauerite. 39 mm, Raddusa, Italy
Sperrylite, 55 mm, Talnakh, Russia

Properties:
- C - tin-white; S - black; L - metallic; D - opaque; DE - 10.8; H - 6-7; CL - imperfect; F - conchoidal; M - complex combinations of cubic crystals, massive.

Origin and occurrence: It is mainly of magmatic liquid origin, associated with pyrrhotite, pentlandite, cubanite and other minerals. The best crystals come from Talnakh near Norilsk, Siberia, Russia, where inter-grown crystals reached up to 50 mm (2 in). Crystals up to 40 mm (1 3/4 in) across known from Tweefontein, Potgietersrust, Bushveld, South Africa. It also occurred as disseminated aggregates in Sudbury, Ontario, Canada.

Aurostibite

Properties:
- C - gray, tarnishing iridescent; S - gray; L - metallic; D - opaque; DE - 9.9; H - 3; CL - Bnone; M - granular.

Krut'aite

Properties:
- C - gray; S - gray; L - metallic; D - opaque; DE - 6.5; H - 4; M - microscopic crystals, massive.

Origin and occurrence: Hydrothermal, associated with clausthalite, uraninite and other minerals. The richest accumulations of massive aggregates were found in the El Dragon mine, Potosí, Bolivia, where crystals up to 1 mm (1/16 in) occurred as well. It was originally described as microscopic from Petrovice, Czech Republic.

Cobaltite

Properties:
- C - silver-white; S - gray-black; L - metallic, adamantine to dull; D - opaque; DE - 6.3; H - 5.5; CL - perfect; F - uneven; M - pseudo-cubic crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature ore deposits and metamorphic, together with Aurostibite, 4 mm grain, Krasna Hora, Czech Republic.
with magnetite, sphalerite, chalcopyrite, other sulfides and arsenides of Co and Ni. The best dodecahedra, several cm across, come from metamorphic sulfide deposits in Tunaberg, Sweden. Other Swedish localities, like Häkansboda and Ramsberg, yielded crystals up to 60 mm (24 in) across. Fine crystals about 10 mm (3/8 in) occurred in the magnesite deposit Mutnik near Humst’a, Slovakia. Cubic crystals up to 30 mm (1¼ in) across found in Espanola, Ontario, Canada. Beautiful crystals are known from the skarn in Bimbowiec, South Australia, Australia.

Application: Co ore.

Gersdorffite

NiAsS

Cubic

Properties: C - silver-white to steel-gray, tarnishing gray-black; S - gray-black; L - metallic; D - opaque; DE = 6.0; H = 5.5; CL - perfect; F - uneven; M - octahedral striated crystals and their combinations, massive.

Origin and occurrence: Hydrothermal in medium-temperature ore deposits in association with nickel-mine, nickel-skutterudite, ullmanite, siderite and other minerals. Crystals up to 100 mm (4 in) across come from the Snowbird mine, Montana, USA. It is important in several mines near Sudbury and Cobalt, Ontario, Canada. Large cleavable masses are known from Dobins, Rudnany and Nizna Slana, Slovakia. Crystals from the Ait Ahmane mine near Bou Azzer, Morocco, reached up to 40 mm (1¾ in). *Application:* Ni ore.

Gersdorffite. 10 mm xx. Bou Azzer, Morocco
Ullmanite, 60 mm, Bou Cricha, Morocco

Ullmanite
NiSbS

CUBIC

Properties: C - steel-gray to silver-white; S - gray-black; L - metallic; D - opaque; DE - 6.8; H - 5.5; CL - perfect; F - uneven; M - combinations of cubic crystals, massive.

Origin and occurrence: Hydrothermal in ore veins together with other Ni minerals. Fine crystals, up to 20 mm (¾ in) across, come from Monte Narba near Sarrabus, Sardinia, Italy. Twins are known from Lolling, Austria. Crystals up to 10 mm (¼ in) were found in Keice near Stíbro, Czech Republic. It is common in Broken Hill, New South Wales, Australia and in Cochabamba, Bolivia. Application: Ni ore.

Marcasite
FeS2

ORTHORHOMBIC

Properties: C - tin-white, bronze-yellow, tarnishing iridescent; S - grayish to brownish-black; L - metallic; D - opaque; DE - 4.9; H - 6-6.5; CL - good; F - uneven; M - tabular, pyramidal and prismatic crystals, often twinned into the form of cockscomb-like aggregates, stalactitic, botryoidal and massive.

Origin and occurrence: It originates at low temperatures in very acidic environment, either in sedimentary, or in hydrothermal deposits, associated with pyrite, pyrrhotite, galena, sphalerite, fluorite, dolomite and calcite. Hydrothermal crystals and pseudo-morphs after pyrrhotite are known from Freiberg, Germany; Llallagua, Bolivia and Chiuzbaia, Romania. Crystals from Wiesloch, Germany and Reocin, Santander, Spain are of similar origin. Large crystals occurred in Joplin, Missouri and in Galena, Illinois, USA. The best crystals of sedimentary marcasite come from coal basins. Fine crystals from black coal are known from Essen, Germany. Cockscomb-like aggregates up to 150 mm (6 in) across, come from the brown coal basin in Vintiów, Czech Republic. Spherical, radial concretions with pyrite are known from Sparta, Illinois, USA and from Champagne, France. Application: production of sulfuric acid.
Lollingite
\[\text{FeAs_2} \]

ORTHORHOMBIC

Properties: C - steel-gray to silver-white; S - gray-black; L - metallic; D - opaque; DE - 7,5; H - 5-5,5; CL - sometimes good; F - uneven; M - prismatic crystals, massive.

Origin and occurrence: Magmatic in pegmatites; hydrothermal in greisens and Sn-W veins, rare in the other types of ore veins, together with skutterudite, bismuth, nickel, siderite, calcite and other minerals. Fine crystals are known from syenite in Langensundsfjord, Norway. Crystals up to 50 cm (20 in) across come from a pegmatite in Kaatiala, Finland. Masses occur in the Kobokobo pegmatite, Kivu, Zaire. Massive aggregates with schorl were found in Dolni Bory, aggregates with cassiterite in Preebuz, Czech Republic.

Safflorite
\[(\text{Co,Fe})\text{As}_2 \]

ORTHORHOMBIC

Properties: C - tin-white, tarnishing to dark gray; S - gray-black; L - metallic; D - opaque; DE - 7,5; H - 4,5-5; CL - good; F - uneven to conchoidal; M - prismatic crystals, massive.

Origin and occurrence: Hydrothermal in medium-temperature with skutterudite, rammelsbergite, nickel, silver, bismuth and lollingite. It is common in Schneeberg, Germany; Cobalt, Ontario, Canada; Batopilas, Chihuahua, Mexico and in Bou Azzer, Morocco.

Rammelsbergite
\[\text{NiAs}_2 \]

ORTHORHOMBIC

Properties: C - tin-white, pinkish; S - gray-black; L - metallic; D - opaque; DE - 7,1; H - 5,5-6; CL - good; F - uneven; M - prismatic crystals, radial and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in medium-temperature veins associated with other Ni and Co minerals. Botryoidal aggregates come from Schneeberg, Germany. It is common in Sarrabus, Sardinia, Italy; in the Eldorado mine near Great Bear Lake; in Cobalt, Ontario, Canada and Bou Azzer, Morocco.
Arsenopyrite
FeAsS
MONOCLINIC

Properties: C - silver-white to steel-gray; S - black; L - metallic; D - opaque; DE - 6.2; H - 5.5 - 6; CL - good; F - uneven; M - thick tabular to prismatic striated crystals, granular, massive.

Origin and occurrence: It occurs in pegmatites; hydrothermal in high-temperature vein deposits and greisens; metamorphic in contact metamorphic skarns, gneissons and mica schists. Long prismatic crystals up to 30 cm (12 in) long are known from the Obira mine, Japan. It is very common in greisen Sn and W deposits, fine crystals are known from Horní Slavkov, Czech Republic and Ehrenfriedersdorf, Germany. Beautiful crystals up to 50 mm (2 in) across come from Panasqueira, Portugal, where they occurred associated with fluorapatite, wolframite and siderite. Historically important were large crystals from Tavistock, Devon, UK. Crystals up to 40 mm (1½ in) found in Llallagua, Bolivia. Crystals up to 50 mm (2 in) across were found recently in the Nikolai mine in Dalnegorsk, Russia.

Gudmundite
FeSbS
MONOCLINIC

Properties: C - silver-white to steel-gray; S - black; L - metallic; D - opaque; DE - 7.0; H - 5-6; CL - none; F - uneven; M - prismatic twinned crystals, massive.

Origin and occurrence: Late hydrothermal mineral of ore deposits, also in metamorphic deposits and skarns. It is common in metamorphic sulfide deposits in Sweden (Boliden, Gudmundstorp). Massive aggregates are known from Kutna Hora and Vlastijovice, Czech Republic. It was common in Broken Hill, New South Wales, Australia.

Molybdenite
MoS2
HEXAGONAL

Properties: C - lead-gray; S - blue-gray; L - metallic; D - opaque; DE - 4.0; H - 1-1.5; CL - perfect; M - tabular and prismatic crystals, scaly aggregates.

Origin and occurrence: Magmatic in pegmatites, granite and aplites, hydrothermal in high-temperature veins, also in porphyry ore deposits and in contact metamorphic deposits, associated with chalcopyrite, quartz and other minerals. Large crystals come from pegmatites in Blue Hill Bay, Maine, USA and in Mutus-Fides-Stavoren, Transvaal, South Africa, where they reach several tens of cm in size. Crystals up to 150 x 70 mm (6 x 2¾ in) across come from the transitional type between pegmatites and quartz veins near Arendal and Moss, Norway; large crystals also occur in the Temiskamina district, Quebec, Canada; tabular crystals up to 120 mm ("½ in) across found in quartz-molybdenite breccia pipes in veins in Australia (Queensland, New South Wales). Fine crystals are also known from Kladnica near Višo, Bulgaria; Horní Slavkov, Czech Republic and Ehrenfriedersdorf, Germany. As a fine grained disseminated ore was mined in Bingham, Utah and Climax, Colorado, USA.

Skutterudite
CoAs₂₃
CUBIC

Properties: C - tin-white to silver-gray, tarnishing to

Shiny crystals up to 30 mm (1¼ in) across, come from Hunan province, China. Application: As ore.
Properties: C - tin-white to silver, tarnishing to gray and iridescent; S - black; L - metallic; D - opaque; DE - 6.8; H - 5.5 - 6; CL - good; F - conchoidal to uneven; M - combinations of cubic crystals, skeletal aggregates, granular, massive.

Origin and occurrence: Hydrothermal in medium- to high-temperature ore veins, associated with other Ni and Co minerals. Crystals up to 50 mm (2 in) across come from Bou Azzer, Morocco. Crystals up to several cm in size were found in Schneeberg and Annaberg, Germany. Large massive accumulations occur in Cobalt and Gowganda, Ontario, Canada. Application: Co ore.

Nickel-skutterudite, 25 mm. Schneeberg, Germany

Skutterudite, 25 mm. Schneeberg, Germany

Nickel-skutterudite

NiAs₃

CUBIC

Properties: C - tin-white to silver, tarnishing to gray and iridescent; S - black; L - metallic; D - opaque; DE - 6.5; H - 5.5 - 6; CL - good; F - conchoidal to uneven; M - combinations of cubic crystals, skeletal aggregates, granular.

Origin and occurrence: Hydrothermal in medium-temperature veins with arsenopyrite, arsenic, bismuth, calcite and siderite. Known in crystals from Chatham, Connecticut and Chester, Massachusetts, USA; also Val d'Anniviers, Wallis, Switzerland. Massive aggregates come from Dobsina, Slovakia; Les Chalanches, France; Mohawk mine, Michigan, USA; Schneeberg, Germany. Application: ruda Co a Ni.

Nickel-skutterudite, 36 mm. Saxony, Germany
Proustite, 25 mm, Chanarcillo, Chile

Proustite

Ag₃AsS₃

Properties:
- **C** - crimson, darkens upon exposure to light;
- **S** - crimson;
- **L** - adamantine;
- **D** - translucent to opaque;
- **DE** - 5.6;
- **H** - 2-2.5;
- **CL** - good;
- **F** - conchoidal to uneven;
- **M** - prismatic, rhombohedral and scalenohedral crystals, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, also in the oxidation and cementation zone together with stephanite, silver, xanthoconite, acanthite and other minerals. The best specimens with crystals up to 100 mm (4 in) long come from the Dolores mine, Chanarcillo, Chile. Crystals up to 80 mm (3½ in) long found in the Himmelsfurst mine in Freiberg, Niederschlema and Schweiberg, Germany. Large druses with crystals up to 40 x 20 mm (1¾ x ¾ in) across occurred in Jachymov; crystals up to 20 mm (¾ in) across known from Pribram and Stara Vozice, Czech Republic. Fine crystals come from Batopilas, Chihuahua and Sombrerete, Zacatecas, Mexico. Crystalline masses of proustite, weighing over 250 kg (550 lb), were found in 1865 in the Poorman mine, Silver City, Idaho, USA. **Application:** Ag ore.
Pyrargyrite
\(\text{Ag}_3\text{SbS}_3 \)

Trigonal

Properties:
- **C**: dark red, darkens upon exposure to light;
- **S**: crimson;
- **L**: adamantine;
- **D**: translucent to opaque;
- **DE**: 5.9;
- **H**: 2.5;
- **CL**: good;
- **F**: conchooidal to uneven;
- **M**: prismatic, rhombohedral and scalenohedral crystals, granular, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, also secondary in the oxidation and cementation zone, together with silver, acanthite, other Ag sulfosalts, calcite and quartz. Crystals in Colquechaca, Bolivia and Chañarcillo, Chile reached several cm in size. Crystals up to 70 mm (2 1/4 in) long occurred in the Santo Niño vein in Fresnillo, Zacatecas, Mexico. San Genaro mine in Huancavelica, Peru yielded crystals up to 50 mm (2 in) across. Crystals up to 40 mm (1 3/8 in) across found in Freiberg; smaller crystals only are known from St. Andreasberg, Germany. Crystals up to 20 mm (7/8 in) across come from Pribram and Stará Vozice, Czech Republic. Crystals up to 50 mm (2 in) across found in the San Carlos mine, Hiedelbad, Spain.

Application: Ag ore.

Xanthoconite
\(\text{Ag}_3\text{AsS}_3 \)

Monoclinic

Properties:
- **C**: dark crimson, orange-yellow to yellow-brown;
- **S**: orange-yellow;
- **L**: adamantine;
- **D**: translucent;
- **DE**: 5.5;
- **H**: 2-3;
- **CL**: good;
- **F**: conchooidal;
- **M**: tabular and lath-like crystals, botryoidal and radial aggregates.

Origin and occurrence: Hydrothermal in ore veins together with proustite, pyrargyrite, acanthite, arsenic and calcite. Botryoidal masses with yellow crystals up to 7 mm (7/32 in) long come from Freiberg; other important localities are St. Andreasberg, Germany; Ste-Marie-aux-Mines, France; Cobalt, Ontario, Canada; Pribram, Trebsko and Jachymov, Czech Republic.

Pyrostilpine
\(\text{Ag}_3\text{SbS}_3 \)

Monoclinic

Properties:
- **C**: hyacinth to orange-red;
- **S**: orange-yellow;
- **L**: adamantine;
- **D**: translucent;
- **DE**: 6.0;
- **H**: 2;
- **CL**: perfect;
- **F**: conchooidal;
- **M**: tabular to lath-like crystals, radial aggregates.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with pyrargyrite, stefanite, acanthite and other Ag minerals. The best crystals come from St. Andreasberg, Germany. Crystals up to 10 mm (7/32 in) long were found in Pribram, Trebsko and Jachymov, Czech Republic. It is also described from Colquechaca, Bolivia and Chañarcillo, Chile.
Samsonite

\[\text{Ag}_4\text{MnSb}_2\text{S}_6 \]

MONOCLINIC

Properties: C – steel-gray; S – dark red; L – metallic; D – opaque; DE – 5.5; H – 2.5; CL – none; F – conchoidal; M – prismatic striated crystals.

Origin and occurrence: The only locality, where it occurred in relatively larger amount, was the Samson mine in St. Andreasberg, Germany, where crystals up to 10 mm (\(\frac{7}{8}\) in) across were found.

Chalcostibite

\[\text{CuSbS}_2 \]

ORTHORHOMBIC

Properties: C – lead-gray, tarnishing to blue and green; S – lead-gray; L – metallic; D – opaque; DE – 5.0; H – 3-4; CL – perfect; F – conchoidal; M – long prismatic, striated crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with jamesonite, chalcopyrite, tetrahedrite, stibnite, andorite and other minerals. Partly altered crystals up to 100 mm (4 in) long are known from Rar-el-Auz near Casablanca, Morocco. It is often in deposits in Bolivia (Huanchaca, Oruro, Colquechaca), where its crystals reach 10 mm (\(\frac{3}{8}\) in).
Emplectite
CuBiS₂
ORTHORHOMBIC

Properties: C - gray to tin-white; S - gray; L - metallic; D - opaque; DE - 6.4; H - 2; CL - perfect; F - conchoidal to uneven; M - thin prismatic to acicular striated crystals.

Origin and occurrence: Hydrothermal in high-temperature veins associated with chalcopyrite.

Wittichenite
Cu₃BiS₃
ORTHORHOMBIC

Properties: C - steel-gray to tin-white, tarnishing yellow to steel-gray; S - black; L - metallic; D - opaque; DE - 6.2; H - 2-3; CL - none; F - conchoidal; M - prismatic crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with other Bi minerals, Cu-Fe sulfides, selenides and secondary U minerals. It occurs in Wittichen, Germany; Bátá Bihorului, Romania; Tsumeb, Namibia and Cerro de Pasco, Peru.

Berthierite
FeSb₂S₄
ORTHORHOMBIC

Properties: C - dark steel-gray, tarnishing iridescent to brown; S - dark brown-gray; L - metallic; D - opaque; DE - 4.7; H - 2-3; CL - imperfect; M - long prismatic, striated crystals, fibrous, felt-like and radial aggregates.

Origin and occurrence: Hydrothermal in low-temperature Sb deposits. Acicular crystals up to 10 mm (⅜ in) long are known from the St. Antoni de Padua gallery in Kutná Hora, Czech Republic; thick prismatic crystals come from Popoc, Slovakia. Iridescent columnar aggregates up to 200 mm (7¾ in) long occur in Heria, Romania. Fine specimens are known also from Oruro, Bolivia.
Stephanite, Ag$_5$Sb$_4$S$_4$

Orthorhombic

Properties: C - black; S - black; L - metallic; D - opaque; DE - 6.3; H - 2-2.5; CL - imperfect; F - conchoidal; M - short prismatic to tabular striated crystals, massive.

Origin and occurrence: Late hydrothermal mineral in Ag deposits, associated with proustite, acanthite, silver, tetrathedrite, galena, sphalerite and pyrite. Crystals up to 40 mm (1.5 in) long come from Pribram and Jachymov, Czech Republic and from St. Andreasberg, Germany. Crystals up to 50 mm (2 in) across found in the Las Chispas mine, Arizpe, Sonora, Mexico and Huelva, Spain. Smaller crystals occurred in Freiberg, Schneeberg and Annaberg, Germany. Application: Ag ore.

Pearceite, Ag$_5$As$_2$S$_11$

Monoclinic

Properties: C - black; S - black; L - metallic; D - opaque; DE - 6.4; H - 2-3; CL - imperfect; F - uneven; M - pseudo-hexagonal tabular crystals, massive.

Origin and occurrence: Hydrothermal in low- to medium-temperature ore veins, associated with acanthite, silver, proustite, quartz, barite and calcite. Crystals several mm across are known from Jachymov, Moldava and Vidince, Czech Republic; from Arqueros, Chile and from the Veta Rica mine, Coahuila, Mexico. Crystals up to 12 mm (0.5 in) across were found in the Cari-bou mine, Colorado, USA; also in Dzhezkazgan, Kazakhstan. Huge accumulations of almost pure pearceite occurred in the Mollie Gibson mine near Aspen, Colorado, USA. Application: Ag ore.
Potybasite, 39 mm, Zacatecas, Mexico

pyrargyrite, tetrahedrite, stephanite, acanthite, quartz and other minerals. Crystals, several cm across, are known from Wolfach, St. Andreasberg, Freiberg and Schneeberg, Germany; also from Guanajuato, Mexico. The best specimens with tabular crystals up to 90 mm (3 ¾ in) across come from the Las Chispas mine, Arizpe, Sonora, Mexico. Application: Ag ore.

Lorandite

TIA\(\text{S}_2\)

MONOCLINIC

Properties: C – crimson, lead-gray; S – yellow coating; L – metallic to adamantine; D – translucent to transparent; DE – 5,5; H – 2-2,5; CL – perfect; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal, associated with stibnite, realgar, orpiment, pyrite and other minerals. Crystals up to 50 mm (2 in) across were found in Allchar, Macedonia. It is also known from Diijikrüt, Tajikistan and from the cavities in dolomite from Lengenbach, Binntal, Switzerland.

Livingstonite

HgSb\(\text{S}_8\)

MONOCLINIC

Properties: C – black-gray; S – red; L – metallic to adamantine; D – opaque; DE – 5,0; H – 2; CL – perfect; M – acicular crystals, columnar and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with cinnabar, stibnite, getchellite and other minerals. The best specimens with prismatic crystals up to 50 mm (2 in) long are known from Khaidarkan, smaller crystals only found from Kadamzhai, Kyrgyzstan. It is also described from the La Cruz mine, Huitzuco, Guerrero, Mexico and from the Matsuo mine, Japan.

Lorandite, 10 mm x, Allchar, Macedonia

Livingstonite, 40 mm, Khaidarkan, Kyrgyzstan
Bournonite
PbCuSbS$_3$

ORTHORHOMBIC

Properties:
- **C:** steel-gray to black
- **S:** steel-gray to black
- **L:** adamantine to dull
- **D:** opaque
- **DE:** 5.8
- **H:** 2.5-3
- **CL:** imperfect
- **F:** conchoidal to uneven
- **VI:** short prismatic to tabular crystals, often striated, granular, massive

Origin and occurrence:
Hydrothermal in medium-temperature ore deposits, together with galena, tetrahedrite, pyrite, siderite and other minerals. The finest crystals, complex twins called cogswheel ore, over 50 mm (2 in) across come from the Herodsfoot mine near Liskeard, Cornwall, UK. Tabular crystals up to 40 mm (1.5 in) across found in siderite cavities in Pribram, Czech Republic; large prismatic and tabular crystals known from Neudorf, Germany. Smaller crystals common in Cavnic and Baia Sprie, Romania. Crystals, up to 100 mm (4 in) across, occurred in Machacamarca, Bolivia. Crystals up to 40 mm (1.5 in) come from Huancavelica, Peru. Crystals up to 100 mm (4 in) across reported from the Les Malines mine, France. Crystals up to 20 mm (25/32 in) across found at Chenzhou, Hunan province, China.

Application:
Pb, Cu and Sb ore.

Aikinite
PbCuBiS$_3$

ORTHORHOMBIC

Properties:
- **C:** black-gray, tarnishing brown
- **S:** gray-black
- **L:** metallic
- **D:** opaque
- **DE:** 7.3
- **H:** gray-black

Origin and occurrence:
Hydrothermal in medium-temperature ore deposits, together with galena, tetrahedrite, pyrite, siderite and other minerals. The finest crystals, complex twins called cogswheel ore, over 50 mm (2 in) across come from the Herodsfoot mine near Liskeard, Cornwall, UK. Tabular crystals up to 40 mm (1.5 in) across found in siderite cavities in Pribram, Czech Republic; large prismatic and tabular crystals known from Neudorf, Germany. Smaller crystals common in Cavnic and Baia Sprie, Romania. Crystals, up to 100 mm (4 in) across, occurred in Machacamarca, Bolivia. Crystals up to 40 mm (1.5 in) come from Huancavelica, Peru. Crystals up to 100 mm (4 in) across reported from the Les Malines mine, France. Crystals up to 20 mm (25/32 in) across found at Chenzhou, Hunan province, China.

Application:
Pb, Cu and Sb ore.
Betekhtinite. 10 mm xx. Dzhezkazgan, Kazakhstan

Betekhtinite

Cu_{10}(Fe,Pb)S_{6}

ORTHORHOMBIC

Properties: C - black; S - black; L - metallic; D - opaque; DE - 6,1; H - 3-3,5; CL - good; M - prismatic to acicular, striated crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with gold, pyrite, galena, tennantite and other minerals. It is common in quartz veins with gold in Berezovsk, Ural Mountains, Russia, where crystals up to 30 mm (1⅞ in) long were found; fine crystals come also from La Gardette, Bourg d'Oisans, France. Grains up to 50 mm (2 in) across occurred in the Outlaw mine, Nevada, USA. It is also known in metamorphic veins in Val d'Anniviers, Switzerland.

Andorite

PbAgSb_{3}S_{6}

ORTHORHOMBIC

Properties: C - dark steel-gray, tarnishing to yellow and iridescent; S - black; L - metallic; D - opaque; DE - 5,4; H - 3-3,5; CL - none; F - conchoidal; M - prismatic and tabular striated crystals, massive.

Origin and occurrence: Hydrothermal in ore deposits, together with cassiterite, jamesonite, stannite and other minerals. The world's best specimens come from the Ijos and San Jose mines in Oruro and the Tatasi mine in Potosi, Bolivia, where it forms crystals up to 30 mm (1⅞ in) across. Thin tabular crystals are known from Baia Sprie, Romania and from the Keyser mine, Nevada, USA. Needles up to 10 mm (⅝ in) long occurred in Trebso, Czech Republic.

Application: ruda Ag.
Freieslebenite

\[\text{AgPbSbS}_3 \]

MONOCLINIC

Properties: C - light steel-gray, lead-gray to silver-white; S - light steel-gray, lead-gray to silver-white; L - metallic; D - opaque; DE - 6.2; H - 2-2.5; CL - imperfect; F - conchoidal to uneven; M - prismatic, striated crystals.

Origin and occurrence: Hydrothermal in ore deposits, associated with acanthite, pyrargyrite, silver, galena, siderite and andorite. Crystals up to 20 mm (\(\frac{3}{4} \) in) across come from the Santa Cecilia, Guadalajara, Spain; Freiberg, Germany; Oruro, Bolivia; and from the Treasury Lode, Colorado, USA.

Diaphorite

\[\text{Pb}_2\text{As}_3\text{Sb}_3\text{S}_9 \]

MONOCLINIC

Properties: C - steel-gray; S - steel-gray; L - metallic; D - opaque; DE - 6.0; H - 2.5-3; CL - none; F - conchoidal to uneven; M - prismatic striated crystals.

Origin and occurrence: Hydrothermal in medium-temperature ore veins, associated with galena. Crystals up to 20 mm (\(\frac{3}{4} \) in) across come from the Santa Cecilia, Guadalajara, Spain; Freiberg, Germany, and from the Treasury Lode, Colorado, USA.
sphalerite, pyrargyrite, pyrite and other minerals. Beautiful striated crystals up to 10 mm (1/4 in) come from the cavities of quartz veins in Poibram; rare small crystals, several mm across found in the cavities of quartz veins in the St. Antoni de Padua gallery in Kutna Hora, Czech Republic. Complicated combinations of crystals were described from Braunsdorf, Germany. Crystals up to 80 mm (3 1/2 in) long occurred in Hiendelaencina, Guadalajara, Spain. It is also reported from Catorce, San Luis Potosi, Mexico.

Sartorite

\[\text{PbAs}_2\text{S}_4 \]

MONOCLINIC • •

Properties: C - dark lead-gray; S - chocolate-brown; L - metallic; D - opaque; DE - 5,1; H - 3; CL - good; F - conchoidal; M - prismatic striated crystals.

Origin and occurrence: Hydrothermal in dolomite, associated with tennantite, dufrenoysite, pyrite and realgar. The best crystals up to 100 mm (4 in) long come from Lengenbach, Binntal, Switzerland. It was also found in the Zuni mine, Colorado, USA.

Baumhauerite

\[\text{Pb}_2\text{As}_4\text{S}_9 \]

TRICLINIC •

Properties: C - lead- to steel-gray, tarnishing iridescent; S - chocolate-brown; L - metallic; D - opaque; DE - 5,4; H - 3; CL - perfect; F - conchoidal; M - tabular to short prismatic striated crystals, granular.

Origin and occurrence: Hydrothermal, associated with realgar and other sulfosalts. The best crystals up to 25 mm (1 in) across come from Lengenbach, Binntal, Switzerland. Massive aggregates were found in Hemlo, Thunder Bay, Ontario. Canada and Sterling Hill, New Jersey, USA.

Dufrenoysite

\[\text{Pb}_2\text{As}_2\text{S}_5 \]

MONOCLINIC • •

Properties: C - lead- to steel-gray; S - red-brown to chocolate-brown; L - metallic; D - opaque; DE - 5,6; H - 3; CL - perfect; F - conchoidal; M - elongated striated tabular crystals.

Origin and occurrence: Hydrothermal low-temperature mineral, associated with rathite, sartorite, baumhauerite and realgar. Crystals up to 25 mm (1 in) across come from dolomite in Lengenbach, Binntal, Switzerland. Also found in Batopilas, Chihuahua, Mexico.

Rathite, 60 mm, Binntal, Switzerland

Rathite

\[(\text{Pb,Tl})_2\text{As}_5\text{S}_{10} \]

MONOCLINIC •

Properties: C - lead-gray, tarnishing iridescent; S - chocolate-brown; L - metallic; D - opaque; DE - 5,3; H - 3; CL - perfect; F - conchoidal; M - prismatic striated crystals.

Origin and occurrence: Hydrothermal, associated with other Pb-Tl-As-S minerals. Crystals up to 10 mm (1/4 in) across come from dolomite in Lengenbach, Binntal, Switzerland.

Dufrenoysite, 10 mm x, Binntal, Switzerland

Baumhauerite, 50 mm, Binntal, Switzerland
Jordanite

\[\text{Pb}_{14} \text{(As, \text{Sb})}_{6} \text{S}_{23} \]

MONOCLINIC

Properties: C - lead-gray, tarnishing iridescent; S - black; L - metallic; D - opaque; DE - 6.4; H - 3; CL - perfect; F - conchoidal; M - tabular crystals, botryoidal aggregates.

Origin and occurrence: Hydrothermal in low-temperature ore veins, also in metamorphic dolomites, together with tennantite, sphalerite, galena, dolomite and other minerals. The most famous crystals up to 50 mm (2 in) across come from cavities in dolomite in Lengenbach, Binntal, Switzerland. Tabular crystals occurred also in Sacarim, Romania. Botryoidal aggregates, growing on barite crystals, were described from the Yunosawa mine, Japan.

Geocronite

\[\text{Pb}_{14} \text{(Sb,As)}_{6} \text{S}_{23} \]

MONOCLINIC

Properties: C - light lead-gray; S - light lead-gray to gray-blue; L - metallic; D - opaque; DE - 6.4; H - 2.5; CL - good; F - uneven; M - tabular crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with galena, pyrite, tetrahedrite, barite, fluorite and quartz. Crystals, up to 80 mm (3 ¾ in) across, come from Pietrasanta, Italy. Crystals up to 90 mm (3¾ in) found in Virgem da Lapa, Brazil. Tabular crystals up to 40 mm (1¾ in) across occurred in the Kilbricken mine, Ireland. Massive aggregates are known from Pribram, Czech Republic.
Zinkenite

\[\text{Pb}_9\text{Sb}_{22}\text{S}_42 \]

HEXAGONAL • • •

Properties:
- C - steel-gray, tarnishing iridescent
- S - steel-gray
- L - metallic
- D - opaque
- DE - 5.3
- H - 3.5
- CL - imperfect
- F - uneven
- M - thin prismatic striated crystals, radial to felt-like aggregates, massive

Origin and occurrence: Hydrothermal in ore veins, associated with stibnite, jamesonite, boulangere, bournom, stannite and other minerals. Crystals up to 50 mm (2 in) across are known from the Itos and San Jose mines in Oruro, Bolivia. It was also found in Wolfsberg, Germany; St. Pons, France; Sacarimb and Baia Sprie, Romania.

Jamesonite

\[\text{Pb}_4\text{FeSb}_6\text{S}_14 \]

MONOCLINIC • • • •

Properties:
- C - gray-black, tarnishing iridescent
- S - gray-black
- L - metallic
- D - opaque
- DE - 5.8
- H - 2.5
- CL - good
- F - uneven
- M - acicular crystals, fibrous and felt-like aggregates, massive

Origin and occurrence: Hydrothermal in medium- and low-temperature base metal ore veins, associated with other Pb-sulfosalts, pyrite, sphalerite, galena, tetrahedrite, quartz and other minerals. Needles up to 80 mm (3 3/4 in) long occur in many localities in Bolivia (Tasna; Bolivia mine, Poopo; San Jose and Itos mines, Oruro). It also comes from Wolfsberg and Freiberg, Germany; Nizna Slana, Slovakia and Sombrerete, Zacatecas, Mexico.

Application: Pb and Sb ore.

Images of Zinkenite and Jamesonite.
Semseyite
\[\text{Pb}_4\text{Sb}_8\text{S}_2\]
MONOCLINIC

Properties: C – gray to black; S – black; L – metallic; D – opaque; DE – 6.1; H – 2.5; CL – perfect; M – tabular and prismatic crystals and their rosette-like aggregates.

Origin and occurrence: Hydrothermal in medium-temperature veins, associated with jamesonite, bournonite, zinkenite, sphalerite and other minerals. Fine rosette-like aggregates of crystals over 10 mm (¼ in) across come from Baia Sprie, Herja and Rodna, Romania. It was also found in the San Jose mine, Oruro, Bolivia; Wolfsberg, Germany and Huancavelica, Peru.

Boulangerite
\[\text{Pb}_5\text{Sb}_4\text{S}_n\]
MONOCLINIC

Properties: C – lead-gray; S – brownish; L – metallic to silky; D – opaque; DE – 6.2; H – 2.5-3; CL – none; F – uneven; M – acicular striated crystals, fibrous and felt-like aggregates.

Origin and occurrence: Hydrothermal in medium-temperature veins, together with other Pb sulfosalts, galena, sphalerite and other minerals. Fine needles over 100 mm (4 in) long come from cavities in quartz in Pribram, Czech Republic. It is common in the Coeur d’Alene district, Idaho, USA. Acicular crystals up to 30 cm (12 in) long were found in Trepea, Serbia and Leadville, Colorado, USA. It is also known from Wolfsberg, Germany and Bolivia (Colquechaca, Huanuni, Isca-Isca).

Cosalite
\[\text{Pb}_2\text{Bi}_2\text{S}_5\]
ORTHORHOMBIC

Properties: C – lead- to steel-gray, silver-white; S – black; L – metallic; D – opaque; DE – 7.1; H – 2.5-3; CL – none; F – uneven; M – prismatic to acicular crystals, radial and fibrous aggregates.

Origin and occurrence: Magmatic in pegmatites, hydrothermal in medium-temperature deposits; also metamorphic, associated with sphalerite, chalco-
Kobellite

Pb₂₂Cu₄(Bi,Sb)₃₀S₉₉

ORTHORHOMBIC

Properties: C - black-gray to steel-gray; S - black; L - metallic; D - opaque; DE - 6.5; H - 2.5-3; CL - good; M - fibrous aggregates, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature veins and pegmatites, together with cobaltite, arsenopyrite, chalcopyrite and other minerals. It is known from a sulfide rich pegmatite in the Superior Stone quarry, North Carolina, USA. Massive aggregates are common in Jedlovec, Slovakia. It was originally described from the Hvena mine near Åkersund, Sweden.
Realgar
AsS
MONOCLINIC

Properties: C - red to orange-yellow; S - orange-red to red; L - resinous to greasy; D - transparent to translucent; DE - 3.6; H - 1.5-2; CL - good; M - prismatic striated crystals, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with other As-Sb minerals; also as a sublimation product of volcanic gasses, in hot springs and sediments. The most beautiful crystals over 100 mm (4 in) long come from Shimen, Hunan, China. Crystals up to 70 mm (2¼ in) long occurred in the Getchell mine, Nevada, USA. Crystals up to 80 mm (3¾ in) long were found in Lengenbach, Binntal, Switzerland. Crystals are also known from Baia Sprie, Romania. Massive aggregates are common in Allchar, Macedonia.

Orpiment
As₂S₃
MONOCLINIC

Properties: C - lemon-yellow to bronze-yellow; S - light lemon-yellow; L - resinous to pearly; D - transparent to translucent; DE - 3.5; H - 1.5-2; CL - perfect; M - prismatic crystals, foliated and fibrous aggregates.

Origin and occurrence: Hydrothermal in low-temperature veins, together with realgar, stibnite, calcite etc., also from hot springs and fumaroles. It is also a common product of realgar oxidation. The best crystals up
to 100 mm (4 in) long come from Shimen, Hunan, China. Fine cleavable lamellae occur in Lukhumi, Georgia and Men-Kyule, Yakutia, Russia. Crystals up to 50 mm (2 in) across found in the La Libertad mine, Quiruvilca and Huayllapon, Ancash, Peru. Crystals up to 80 mm (3/4 in) long described from the Getchell mine, Nevada, USA. Fine specimens are also known from Allechar, Macedonia and Khaidarkan, Kyrgyzstan. Application: As ore, pigment.

Getchellite
AsSbS$_3$

MONOCLINC

Properties: C - dark red, tarnishing green and iridescent; S - orange-red; L - pearly to glassy, resinous; D - transparent; DE - 4.0; H - 1.5-2; CL - perfect; F - splintery; M - imperfect curved crystals, massive.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, associated with orpiment, realgar, stibnite, cinnabar and other minerals. It was described from the Getchell mine, Nevada, USA. Beautiful specimens with grains up to several cm across come from Khaidarkan, Kyrgyzstan. It is also known from Zarehshuran, Kurdistan, Iran.

Orpiment, 35 mm, Huayllapon, Peru

Getchellite, 60 mm, Khaidarkan, Kyrgyzstan
3. Halides

Fluellite
\[\text{Al}_2(\text{PO}_4)\text{F}_2(\text{OH})\cdot 7\text{H}_2\text{O} \]

Orthorhombic

Properties:
- Colorless, white; yellow; S - white; L - vitreous; D - transparent; DE - 2.2; H - 3; CL - imperfect; M - dipyramidal crystals.

Origin and occurrence: Hydrothermal in greisens, also secondary as a result of triplitc alteration. Crystal druses over 10 mm (1/4 in) in size come from Horní Slavkov, Czech Republic. Very similar specimens were found in Stenna Gwyn near St. Austell, Cornwall, UK. Also found in pegmatites in Kynzvart, Czech Republic and in Hagendorf, Germany as a product of triplitc alteration.

Cryolite
\[\text{Na}_2\text{AlF}_5 \]

Monoclinic

Properties:
- Colorless, white, purple, brownish; S - white; L - greasy to pearly; D - transparent to translucent; DE - 3; H - 2.5; CL - none; F - uneven; M - pseudo-cubic crystals, massive.

Origin and occurrence: Characteristic mineral of the cryolite pegmatites. Crystals up to 30 mm (11/4 in) in size were found in Ivigtut, Greenland, where it was mined as the Al ore for more than 100 years. It was associated with other aluminofluorides, sphalerite, cassiterite, ferrocolumbite and other minerals. It is also known from the Francon quarry in Montreal, Quebec, Canada in crystals up to 10 mm (1/4 in) across. Massive cryolite occurs in Miass, Ural Mountains, Russia and in St. Peter's Dome, Pikes Peak batholith, Colorado, USA.

Application: It was an important Al ore.
Creedite

$\text{Ca}_3\text{Al}_2(\text{SO}_4)(\text{F,OH})_6 \cdot 6\text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C – colorless, white, purple; S – white; L – vitreous; D – transparent; DE – 2.7; H – 4; CL – perfect; F – conchoidal; M – short prismatic to acicular crystals, granular, massive.

Origin and occurrence: Hydrothermal, associated with fluorite and barite. Purple crystals, several cm long, come from Wagon Wheel Gap near Creede, Colorado, USA. Nice druses were found in Santa Eulalia, Chihuahua, Mexico. The best creedite specimens with purple crystals up to 30 mm (1 1/4 in) long were recently found in Akcha-tau, Kazakhstan.

Carnallite

$\text{K}_2\text{MgCl}_3 \cdot 6\text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C – colorless, white, yellowish, red, blue; S – white; L – vitreous to greasy; DE – 1.6; H – 1-2; CL – none; F – conchoidal; M – pseudo-hexagonal pyramidal and tabular crystals, granular; LU – strong; R – decomposes under wet conditions.

Origin and occurrence: Sedimentary, one of the last products of evaporation of salty solutions; also supergene as a product of a reaction of older salts with solutions, rich in potassium, associated with halite, sylvite and other minerals. Crystals up to 40 mm (1 1/4 in) across are known from the vicinity of Carlsbad, New Mexico, USA. Nice crystals come also from Stassfurt and Alexanderhalle, Germany. Massive aggregates are common in many salt deposits, like in Saskatchewan, Canada; in Kalush, Ukraine and elsewhere.

Application: the most important potassium salt, used as fertilizer and for production of metal Mg.

Atacamite

$\text{Cu}_2\text{Cl(OH)}_3$

ORTHORHOMBIC

Properties: C – emerald-green, black-green; S – green; L – vitreous; D – translucent; DE – 3.8; H – 3-3.5; CL – perfect; F – conchoidal; M – prismatic crystals, columnar, radial and lamellar aggregates, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits in the arid climate, associated with other Cu minerals. Crystals up to 10 mm (1/4 in) long were described from Burra district, Southern Australia, Australia. Crystals up to 10 mm (1/4 in) across come from Tsumeb, Namibia; also from Bisbee, Arizona, USA. Rich aggregates of acicular crystals occur in many localities in Atacama province, Chile (Copiapo, Remolinos).
Boleite
$\text{Pb}_2\text{Ag}_3\text{Cu}_2\text{Cl}_6\text{OH}_{14}$

CUBIC

Properties: C - blue; S - blue; L - pearly; D - translucent; DE - 5.1; H - 3-3.5; CL - perfect; M - cubic crystals; R - soluble in water.

Origin and occurrence: Secondary, originated in the oxidation zone of Cu deposits in the arid climate. By far the best specimens were found in Boleo, Baja California, Mexico, where cubes up to 25 mm (1 in) in size were found. It is also known from Phillipsburg, Montana, USA and Challacollo, Chile.
Cumengite

\[\text{Pb}_2\text{Cu}_{20}\text{Cl}_{42}(\text{OH})_{40} \]

TETRAGONAL

Properties: C - indigo-blue; S - blue; L - vitreous; D - translucent; DE - 4.7; H - 2.5; CL - good; M - tetragonal pyramidal crystals, also epitaxially overgrown on boleite cubes. Origin and occurrence: Secondary in the oxidation zone of Cu deposits in the arid climate, associated with boleite. The largest crystals up to 35 mm (1 1/4 in) are known from Boleo, Baja California, Mexico. It is also reported from Newport Beach near Falmouth, Cornwall, UK.

Iodargyrite

\[\beta\text{-Agl} \]

HEXAGONAL

Properties: C - colorless, tarnishes to yellow; S - yellow; L - adamantine; D - transparent to translucent; DE - 5.7; H - 1-1.5; CL - perfect; F - conchoidal; M - prismatic to tabular crystals, granular, massive. Origin and occurrence: Secondary, product by oxidation of Ag ores, with other Ag minerals. Common greenish crystals over 10 mm (1/2 in) in size occur in Broken Hill, New South Wales, Australia. Also found in Vranice, Czech Republic; Tonopah, Nevada, USA; Chanarcillo and Copiapó, Chile.

Villiaumite

\[\text{NaF} \]

CUBIC

Properties: C - dark red; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 2-2.5; CL - perfect; M - small crystals, granular, massive; R - soluble in water. Origin and occurrence: Late mineral in cavities in alkaline igneous rocks (nepheline syenites). Crystals, several cm long, are known from the Rasvumchorr Mountain, Khibiny massif, Kola Peninsula, Russia; only slightly smaller crystals come from Mont St.-Hilaire, Quebec, Canada and Illimaussaq, Greenland.
Halite

NaCl

CUBIC

Properties: C – colorless, gray, white, red, blue; S – white; L – vitreous; DE – 2.2; H – 2; CL – perfect; F – conchoidal; M – cubic crystals, granular, massive; R – soluble in water.

Origin and occurrence: Product of high-temperature fumaroles (Etna, Mt. Vesuvius; Italy); mainly sedimentary, as a result of evaporation of sea water, associated with sylvite, carnallite and other minerals. Very fine cubes over 10 mm (¼ in) are known from Wieliczka and Bochnia, Poland. Blue cleavable aggregates are found in Bernburg, Germany. Salt deposits in Austria (Hallstatt, Hallein) are also important. Huge halite deposits, associated with potassium salts are mined in the vicinity of Stassfurt, Germany. Fine skeletal crystals are known from many localities in California, USA.

Application: food and chemical industries.

Halite, 18 mm xx, Sonora, Mexico
Properties: C – white, gray, blue, red; S – white; L – vitreous; D – transparent; DE – 2; H – 2; CL – perfect; F – uneven; M – cubic crystals and their combinations; granular, massive; K – soluble in water. Origin and occurrence: Sedimentary as a result of evaporation of sea water, together with halite, carnallite and other minerals. Nice cubes up to 50 mm (2 in) come from Stassfurt; it forms stalactites in Wauthlingen, Germany. Crystals are also known from Kalush, Ukraine and from Salton Sea, California, USA, where it occurs as octahedra on halite crystals. Application: chemical industry.

Properties: C – colorless, white, gray, yellow, brown; S – white; L – vitreous; D – transparent; DE – 1.5; H – 1-2; CL – imperfect; F – conchoidal; M – combinations of cubic crystals, dendritic and skeletal aggregates; earthy. Origin and occurrence: Typical mineral for fumaroles and burning coal dumps, associated with sulfur and other minerals. Complicated crystals are known from Mt. Vesuvius, Etna and Vulcano, Italy. Crystals over 10 mm (¼ in) in size occurred on burning coal dumps near Kladno, Czech Republic; similar from localities in Eastern Pennsylvania, USA and near Ste-Etienne, France.

Properties: C – colorless, white, gray, brown, it darkens on air; S – white; L – adamantine; D – transparent to translucent; DE – 7.2; H – 1.5; CL – good; F – conchoidal; M – tabular to pyramidal crystals, coatings, earthy; LU – dark red. Origin and occurrence: Secondary as a result of alteration of Hg minerals, associated with cinnabar, mercury and other minerals. Crystals were found in Moschellandsberg, Germany; Avala, Serbia;
Fluorite

CaF$_2$

CUBIC

Properties:
- C - colorless, white, yellow, red, green, blue, purple, brown, black
- S - colorless
- L - vitreous
- D - transparent to translucent, opaque
- DE - 3.2
- H - 4
- CL - perfect
- F - conchoidal to splintery
- M - combinations of cubic crystals, granular, massive
- LU - blue, blue-green, also phosphorescent

Origin and occurrence: Rare magmatic, mainly hydrothermal and metasomatic. Associations are very diverse, depending on the type of the deposit, in which it occurs. Beautiful crystals are known from many localities all over the world. Pink octahedra, several cm in size, are known from pegmatites in Nagar, Pakistan. Nice crystals were also found in greisens in Cornwall, UK (Wheal Mary mine) and from Horní Slavkov, Czech Republic. Beautiful green cubes up to 20 cm across and colorless cubes up to 10 mm (⅜ in) across from Dalnegorsk, Russia are of hydrothermal origin. Famous green and purple crystals come from Alston Moor and Weardale, England, UK. Nice pink octahedra up to 30 mm (1⅜ in) occurred in Huanzala, Peru. Beautiful yellow cubes up to 50 mm (2 in) associated with barite, are known from Halsbrücke and Annaberg, Germany. Purple complex combinations of crystals come from La Collada, Spain. Mainly purple cubes up to 10 mm (⅜ in) occurred in Rosiclare, Illinois; in association with honey-yellow calcite crystals are known from the Elmwood mine, Tennessee; similar occurrences are also in several localities in Kentucky, USA. The most valuable fluorite specimens are pink octahedra up to 150 mm (6 in) from Goschenen, Switzerland; Mont Blanc massif, France and other Alpine localities.

Application: metallurgy, chemical industry, special optics.

Fluorite, 50 mm, Argentina

Fluorite, 23 mm ×, Chamonix, France
4. Oxides

Cuprite

Cubic

Varieties: chalcotrichite (acicular to hair-like crystals)

Properties: C - red; S - red; L - adamantine to submetallic; D - transparent to translucent; DE - 5.8-6.2; H - 3.5-4; CL - imperfect; F - conchoidal to uneven;

M - combinations of cubic crystals, hair-like aggregates, granular, massive.

Origin and occurrence: Secondary, as a result of the oxidation of Cu sulfides. Crystals up to 150 mm (6 in) in size, covered with malachite, occur in Onganja, Namibia. Shiny octahedra, up to 40 mm (1 1/4 in) in size, come from the Mashamba West mine, Zaire. Acicular and fibrous crystals of the chalcotrichite variety were found in Bisbee, Arizona, USA. Combinations of cubic crystals, covered with malachite, are known from Cheesy near Lyon, France. Crystals up to 30 mm (1 1/4 in) across are reported from Tsumeb, Namibia.

Application: Important Cu ore.

Zincite

Hexagonal

Properties: C - yellow, orange, red; S - orangeflour; L - adamantine; D - transparent to translucent; DE - 5.7; H - 4.5-5; CL - perfect; F - conchoidal; M - pyramidal crystals, granular, massive.

Origin and occurrence: Metamorphic, associated with willemite and franklinite. It forms very rare crystals up to 40 mm (1 1/4 in) in size in the metamorphosed Zn deposits in Franklin and Sterling Hill, New Jersey, USA. It is mostly granular and massive. Zincite crystals and aggregates of vitreous luster from Poland, which are offered at the mineral shows, are not of a natural origin, there are smelter products.
Tenorite

CuO

MONOCLINIC

Properties:
- C - steel-gray to black;
- S - gray;
- L - metallic;
- D - opaque;
- DE - 6.5;
- H - 3.5;
- CL - imperfect;
- F - uneven to conchoidal;
- M - thin tabular to scaly crystals, earthy, massive.

Origin and occurrence: Secondary, in the oxidation zone of Cu deposits, together with other Cu supergene minerals. It was common in Cu deposits in the Keweenaw Peninsula, Michigan, USA. It was mined as Cu ore in Bisbee, Globe and Morenci, Arizona, USA. Thin tabular crystals are known from Tsumeb, Namibia.

Spinel

MgAl₂O₄

CUBIC

Varieties: pleonast (black)

Properties:
- C - pink, red, green, blue, brown, black;
- S - white;
- L - vitreous to dull;
- D - transparent to opaque;
- DE - 3.6;
- H - 7.5-8;
- CL - imperfect;
- F - conchoidal to uneven;
- M - octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, metamorphic, also in placers, associated with corundum, sillimanite and other minerals. Large pleonast crystals reaching up to 150 mm (6 in) were found in the Aldan massif, Yakutia, Russia. Fine crystals weighing up to 14 kg (30 lb 12 oz) come from Amity, New York. Crystals up to 120 mm (4 ¾ in) across are known from Sterling Hill, New Jersey. Blue crystals of spinel come from Bolton, Massachusetts, USA and South Burgess, Ontario, Canada. Gemmy pink and red crystals up to 20 mm (¾ in) reported near Ratnapura, Sri Lanka and in Mogok, Burma. Fine pink crystals up to 50 mm (2 in) in size occur in Kukh-i-lal, Tajikistan.

Application: gemstone.

Gahnite

ZnAl₂O₄

CUBIC

Properties:
- C - black-green, black;
- S - gray;
- L - vitreous to greasy;
- D - translucent to opaque;
- DE -
4.4-4.6; H – 7.5-8; CL – imperfect; F – conchoidal to uneven; M – octahedral crystals, granular.

Origin and occurrence: Magmatic and metamorphic, associated with wolframite, chalcopyrite and other minerals. Crystals up to 120 mm (4.72 in) in size come from Franklin and Sterling Hill, New Jersey, USA. Crystals from Broken Hill, New South Wales, Australia reached up to 30 mm (1.18 in). Blue-green crystals were found in Rowe, Massachusetts, USA. CUTTABLE blue crystals occur near Gidan Wayo, Nigeria.

Magnetite

\[\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 \]

CUBIC

Properties: C – black; S – black; L – metallic; D – opaque; DE – 5.2; H – 5.5-6.5; CL – none; F – uneven to conchoidal; M – octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, hydrothermal and metamorphic, rare sedimentary. Parageneses differ according to the origin. Fine crystals up to 170 mm (6.69 in) in size, come from Traversella, Italy. A crystal 25 cm (9.84 in) in size was found in Vastanfors, Sweden. Fine crystals up to 40 mm (1.57 in) occur in Dashkesan, Azerbaijan, where it is associated with andradite, epidote and apatite. Beautiful shiny octahedra up to 40 mm (1.57 in) are known from Alpa Lurcheltini, Binntal, Switzerland. Rare cubes up to 20 mm (0.79 in) on edge come from the ZCA No.4 mine, Balmat, New York, USA. Magnetite crystals reaching up to 10 cm were found in pegmatites in Jaguaçu, Minas Gerais, Brazil. Crystals up to 20 cm (7.87 in) in size reported from the Gardiner complex, Greenland. Crystals up to 50 mm (2 in) were lately found in Kevdor, Kola Peninsula, Russia.

Application: Fe ore.
Franklinite. SO₄ mm, Sterling Hill, U.S.A.

Franklinite

(Zn,Mn²⁺,Fe²⁺)(Fe³⁺,Mn²⁺)₂O₄

CUBIC

Properties: C - black; S - dark brown; L - metallic; D - opaque; DE - 4.5-4.8; H - 5; CL - none; F - uneven; M - octahedral crystals, granular, massive.

Origin and occurrence: Metamorphic, associated with willemite, zincite and other minerals. The only localities, where it is common and occurs in very large accumulations, are Franklin and Sterling Hill, New Jersey, USA. Crystals up to 170 mm (6½ in) across are known from there. It is rare in Langban, Sweden and Ocna de Fier, Romania.

Application: Zn ore.

Chromite

FeCr₂O₄

CUBIC

Properties: C - black; S - brown; L - metallic; D - opaque; DE - 4.5-4.8; H - 5; CL - none; F - uneven; M - octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, together with magnetite, uvarovite and other minerals. Rare crystals reaching up to 10 mm (¾ in) are known from Uzun Damar, Turkey. It occurs mostly massive, like in deposits in Bushveld, South Africa; in Sarany, Ural Mountains, Russia and in Guleman, Turkey.

Application: Cr ore.

Hausmannite

Mn²⁺Mn³⁺O₄

TETRAGONAL

Properties: C - black; S - brown; L - submetallic; D - opaque; DE - 4.8; H - 5.5; CL - perfect; F - uneven; M - pseudo-octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature Mn deposits, also as a product of the contact metamorphism. The best specimens with crystals up to 30 mm (1¼ in) in size come from the N’Chwaning mine, Kuruman, South Africa. Smaller crystals were found in Ifield and Ifenau, Germany. It also occurred as fine crystals in Langban and Jakobsberg, Sweden.

Minium. 60 mm, Broken Hill, Australia
Minium
$\text{Pb}_3\text{S}_2\text{Pb}_4\text{O}_4$

TETRAGONAL • • •

Properties: C - red, S - orange-yellow; L - dull to greasy; D - opaque; DE - 8.9; H - 2.5; CL - perfect.

Origin and occurrence: Secondary mineral, as a result of the galena oxidation. It occurs in Langban, Sweden; in Anarak, Iran; in Leadhills, Scotland, and in Broken Hill, New South Wales, Australia.

Hautmanite, 42 mm, Kuruman, South Africa
Chrysoberyl, 35 mm. Espirito Santo, Brazil

Chrysoberyl
BeAl₂O₄

ORTHORHOMBIC • • •

Varieties: alexandrite

Properties: C - yellow-green, yellow, blue-green; alexandrite is green in daylight, purple in artificial light; S - white; L - vitreous; D - transparent to translucent; DE - 3.8; H - 8.5; CL - good; F - conchoidal to uneven; M - thin to thick tabular crystals common cyclic twins.

Origin and occurrence: Magmatic in pegmatites, prevailing as metamorphic, in association with schorl, phenakite and other minerals. Twins up to 22 cm (8'/4 in) occurred near Pancas, Espirito Santo, Brazil. Complicated twins up to 100 mm (4 in) in

Alexandrite. 75 mm. Malychevo, Russia
size come from Ambatondrazaka and other localities in Madagascar. Tabular crystals several cm in size, embedded in the sillimanitic rock, were found in Mar’ikov, Czech Republic. Fine alexandrite crystals up to 80 mm (3/4 in) are known from Malychevo, Ural mountains, Russia, together with emerald and phenakite. Alexandrite crystals reach up to 30 mm (1¼ in) in Nyanda, Zimbabwe. Gemmy chrysoberyls, commonly with a cat’s eye effect, come from the vicinity of Ratnapura, Sri Lanka.

Application: gemstone.

Valentinite

\(\text{Sb}_2\text{O}_3 \)

ORTHORHOMBIC

Properties: C - colorless, white, brownish; S - white; L - adamantine; D - transparent to translucent; DE - 5.7-5.8; H - 2.5-3; CL - perfect; M - prismatic to tabular crystals, radial aggregates, massive.

Origin and occurrence: Secondary mineral, originated in the oxidation of stibnite. The best specimens with crystals up to 30 mm (1¼ in) were found in Pribram, Czech Republic. Fine crystals come also from Braunsdorf, Germany. Crystals up to 20 mm (¾ in) long occur in Oruro, Bolivia. Beautiful radial aggregates up to 40 mm (1¾ in) in diameter, associated with kermesite, are known from Pezinok and Pernek, Slovakia. Pseudo-morphs after stibnite crystals up to 35 cm (13½ in) long, are reported from the Xikuangshan Mine, Lengshuijiang, China.

Arsenolite

\(\text{As}_2\text{O}_3 \)

CUBIC

Properties: C - white, light gray; S - white; L - vitreous; D - transparent to translucent; DE - 3.9; H - 1.5; CL - good; F - conchoidal; M - octahedral crystals, crusts, coatings; R - soluble in water.

Origin and occurrence: Secondary mineral, resulting from the oxidation of As ores. Poorly developed crystals several mm long, occur in Jachymov, Czech Republic; in Johanngeorgenstadt and St. Andreasberg, Germany. Crystals up to 20 mm (¾ in) long originated during a mine fire in the White Caps mine, Nevada, USA.

Senarmontite

\(\text{Sb}_2\text{O}_3 \)

CUBIC

Properties: C - white, light gray; S - white; L - greasy, vitreous to adamantine; D - transparent to opaque; DE - 5.2-5.8; H - 2-2.5; CL - imperfect; F - uneven; M - octahedral crystals, granular, massive.

Origin and occurrence: Secondary, produced by stibnite oxidation, with valentinite and cerussite. The finest crystals up to 30 mm (1¼ in) in size come from Djebel Hammimane, Algeria. Also occurred in Cetine, Italy and in Dubrava, Slovakia.
Bixbyite

\[(\text{Mn}^{2+},\text{Fe}^{3+})_2\text{O}_3\]

Properties:
- C - black
- S - black
- L - metallic to submetallic
- D - opaque
- DE - 5
- H - 6.5
- CLB imperfect
- F - conchoidal to uneven
- M - cubic crystals, also twins

Origin and occurrence:
Hydrothermal in rhyolite cavities and metamorphic. Cubes up to 12 mm are found together with topaz in Thomas Range, Utah, USA. Crystals up to 25 mm (1 in) occurred in the Postmasburg mine, South Africa. Crystals up to 80 mm come from Ultevis, Sweden.

Corundum

\[\text{Al}_2\text{O}_3\]

Varieties:
- ruby, sapphire, leucosapphire, emery

Properties:
- C - colorless (leucosapphire), yellow, pink, red (ruby), blue (sapphire), purple, green

Origin and occurrence:
- Ruby, 15 mm, Kola, Russia
Corundum. 4 mm. Montana, U.S.A.

gray; S - white; L - vitreous to adamantine; D - transparent to opaque; DE - 4.0-4.1; H - 9; CL - none; F - conchoidal to uneven; M - long prismatic to barrel-like crystals, pebbles; LU - rare dark red.

Origin and occurrence: Magmatic in andesites, pegmatites and basalts, metamorphic and in placers, in association with andalusite, topaz, spinel and other minerals. Crystals of common corundum weighed up to 30 kg (66 lb) near Bancroft, Ontario, Canada. A crystal, weighing 151 kg (333 lb 3 oz) was also found in the Letaba district, South Africa. Sapphire crystals weighing up to 20 kg (44 lb), come from the vicinity of Ratnapura and Rakwana, Sri Lanka. Fine sapphire crystals are also known from Kashmir, India. Rough gem sapphire is mined from the Yogo Gulch sediments in Montana, USA and from Anikia, Queensland, Australia. Fine blue crystals up to 50 mm (2 in) long, occur near Miass, Ural mountains, Russia. Ruby is even much rarer variety of corundum. Its beautiful crystals up to 50 mm (2 in) long come from Jegdalek, Afghanistan; Mogok, Burma and from Luc Yen, Vietnam. Prismatic crystals of opaque ruby, up to 40 mm (1 3/8 in) in size were found in the Khat Island near Kola Peninsula, Russia. Ruby crystals up to 30 cm (12 in) in size embedded in green zoisite from the vicinity of Arusha, Tanzania are very decorative.

Application: emery as abrasive material, sapphire and ruby as gemstones.
Hematite

Fe₂O₃

TRIGONAL • • • • •

Properties: C - red, gray, black; S - red; L - metallic, dull; D - opaque; DE - 5.3; H - 6-6.5, earthy to I; CL - none; F - uneven to conchooidal; M - thick to thin tabular crystals, massive, earthy.

Origin and occurrence: Magmatic, hydrothermal.

Loparite-(Ce), 10 mm xx. Khibiny Massif. Kola, Russia

Hematite, 50 mm. La Fibbia, Switzerland

Ilmenite

FeTiO₃

TRIGONAL • • • • •

Properties: C - black; S - black; L - metallic to dull; D - opaque; DE - 4.5-5; H - 5-6; CL - none; F - conchooidal to uneven; M - thick tabular crystals, granular, massive.

Origin and occurrence: Magmatic, metamorphic and in placers, associated with pyrrhotite, rutile, magnetite and other minerals. Crystals weighing up to 100 mm (4 in) in size come from Brumado, BahRa, Brazil. Crystals up to 30 cm (12 in), were found in the Wessels mine, Kuruman, South Africa. So called iron roses reached up to 100 mm (4 in) near St. Gotthard, Switzerland. Fine crystals several cm in size, occurred in Rio Marina, Elba, Italy. Very fine tabular crystals reached up to 70 mm (2¾ in) in Nador, Morocco. New finds of fine crystals up to 40 mm (1¾ in) in size were made in the Korshunovskoye deposit, Russia. Fine botryoidal aggregates come from Hradiste and Horni Blatna, Czech Republic and from Botallack, Cornwall, UK. Sedimentary banded iron ores form huge deposits near Krivoy Rog, Ukraine or in the vicinity of Lake Superior (Mesabi Range, Minnesota; Marquette, Michigan, USA).

Application: important Fe ore.
Ilmenite, 11 mm x, Binonal, Switzerland

Crystals up to 30 kg (66 lb) were described from the Faraday mine near Bancroft, Ontario, Canada. Crystals up to 150 mm (6 in) in size occurred near Girardville, Quebec, Canada. Crystals also reached up to 100 mm (4 in) near Miass, Ural mountains, Russia. Crystals up to 120 mm 120 mm (4 in) in size, were found in Arendal and Kragero, Norway. Crystal rosettes up to 10 mm (1/4 in) in size come from Maderanertal, Switzerland. It is also common in placers (Kamituga, Kivu, Zaire; Sri Lanka; Travancore, India; Madagascar etc.).

Perovskite

Properties: C - dark brown to black; S - colorless to gray; L - metallic to adamantine; D - opaque; DE - 4.0-4.3; H - 5.5-6; CL - imperfect; F - conchoidal to uneven; M - pseudo-cubic crystals, granular.

Origin and occurrence: Magmatic in basic and ultrabasic rocks, metamorphic, with magnetite, zircon and other minerals. Fine pseudo-cubic crystals up to 40 mm (1¾ in) in size come from Zlatoust and Akhmatovsk, Ural mountains, Russia. It occurs as crystals up to 80 mm (3¾ in), associated with magnetite crystals in the Gardiner complex, Greenland. Crystals up to 40 mm (1¾ in) were found in Jacupiranga, Sao Paulo, Brazil. Crystals from Val Malenco, Italy, reached up to 20 mm (¾ in). Crystals up to 20 mm (¾ in) were lately found in Afrikanda, Kola Peninsula, Russia.

Loparite-(Ce)

\[(\text{Ce},\text{Na},\text{Ca})\text{TiO}_3\]

Properties: C - black, S - dark red-brown, L - metallic; D - opaque; DE - 4.6-4.9; H - 5.5-6; M - pseudo-cubic crystals, granular; R - metamict.

Origin and occurrence: Magmatic in alkaline rocks, with lorenzenite, eudialyte and aegirine. Fine interpenetration twins up to 20 mm (¾ in) in size come from Mount Nyorkpakhk, Kola Peninsula, Russia.

Perovskite, 60 mm, Zlatoust, Russia
Stibiconite, 230 mm, Catorce, Mexico

San Luis Potosí, Mexico. Similar pseudo-morphs were also found in Kostainik, Serbia; in the Ichinokawa mine, Japan and in Pereta, Italy. Pseudo-morphs after stibnite up to 20 cm (7 ½ in) long occur also in Çukuroren, Turkey.

Stibiconite

\[\text{Sb}^{3+}\text{Sb}^{5+}_2\text{O}_6(\text{OH}) \]

Properties:
- C - white, creamy, light yellow, brown;
- S - white;
- L - vitreous, greasy to dull;
- D - opaque;
- DE - 4.1-5.8;
- H - 3-6;
- M - pseudo-morphs after stibnite crystals, earthy, massive.

Origin and occurrence: Secondary, as a result of the stibnite oxidation, associated with valentinite and other minerals. Fine pseudo-morphs after stibnite crystals up to 30 cm (12 in) long come from Catorce.

Bindheimite

\[\text{Pb}_2\text{Sb}_2\text{O}_6(\text{OH}) \]

[Image of Bindheimite]

Properties:
- C - yellow, brown, gray;
- S - yellow;
- L - resinous, dull to earthy;
- D - translucent to opaque;
- DE - 4.6-5.6;
- H - 4-4.5;
- F - conchoidal to earthy;
- M - botryoidal, nodular and earthy crusts.

Origin and occurrence: Secondary in the oxidation zone of Pb-Sb deposits. Needles up to 10 mm (½ in) long come from Rudnik, Czech Republic. It is common in Broken Hill, New South Wales, Australia; in Bisbee, Arizona, USA and in Sidi-Amor-ben-Salem, Tunisia. Lamellar pseudo-morphs up to several cm in size are known from Tsumeb, Namibia.

Pyrochlore

\[(\text{Na, Ca})_2\text{Nb}_2\text{O}_6(\text{OH}, \text{F})\]

[Image of Pyrochlore]

Properties:
- C - yellow-brown, brown, black;
- S - brown;
- L - vitreous to greasy;
- D - translucent to opaque;
- DE - 4.5;
- H - 5-5.5;
- CL - locally good;
- F - conchoidal to uneven;
- M - octahedral crystals, granular;
- R - radioactive (admixtures of U, Th).

Origin and occurrence: Magmatic in alkaline rocks, together with zircon, astrophyllite and other minerals. Fine brown shiny crystals up to 20 mm (¾ in) in size come from the vicinity of Vishnevorsk, Ural mountains, Russia. Crystals reaching 10 mm (¾ in) occur in the Panda Hill deposit, Tanzania. Crystals are also known from Oka, Quebec, Canada. Single octahedra measuring 5 mm (¼ in) were found in Luesha, Kivu, Zaire. **Application:** Nb, U and Th ore.

Microlite

[Image of Microlite]
Betafite

$$(\text{Ca,Na,U})_2(\text{Ti,Nb,Ta})_2\text{O}_6(\text{OH})$$

CUBIC

Properties:
- C - black, brown, yellow-brown; SB red-brown
- L - resinous to greasy; D - translucent to opaque
- DE - 4.2; H - 3-5.5; CL - none; F - conchooidal to uneven
- M - octahedral crystals; R - radioactive, metamict

Origin and occurrence:
Magmatic in granitic pegmatites, rich in U, Th and rare earth elements, associated with beryl, euxenite-(Y) and other minerals.

The world's best specimens come from many localities in Madagascar (Betafo, Ambatofotsikey etc.), where crystals up to 6 kg (13 lb 3 oz) were found. Beautiful specimens with crystals up to 100 mm (4 in) in size occur in the Silver Crater mine near Bancroft, Ontario, Canada. It is also known from Evje, Norway.

Mikrolite

$$(\text{Na,Ca})_2\text{Ta}_2\text{O}_6(\text{O,OH,F})$$

CUBIC

Properties:
- C - brown, yellow, green, reddish; S - white
- L - vitreous to greasy, locally adamantine
- D - translucent to opaque; DE - 5-6.4; H - 6-6.5; CL - locally good; F - conchooidal to uneven
- M - octahedral crystals, granular, massive

Origin and occurrence:
Magmatic, typical for granitic pegmatites, together with manganocolumbite, manganotantalite and other minerals. Octahedra up to 65 mm (2\(\frac{1}{2}\) in) in size occur in Ankola, Uganda. Crystals up to 30 mm (1\(\frac{1}{2}\) in) in size come from Virgem da Lapa, Minas Gerais, Brazil. Crystals up to 75 mm (3 in) are reported from the Harding pegmatite, New Mexico, USA. It occurs in important accumulations near Wodgina, Western Australia.
Quartz, 60 mm, Herkimer, U.S.A.

Quartz
SiO₂

TRIGONAL • • • • •

Varieties: rock crystal, citrine, smoky citrine, morion, amethyst, rose quartz, chrysope, jasper, chalcedony, agate, onyx, sardonyx, aventurine, heliotrope, tiger’s eye, falcon’s eye.

Properties: C - colorless (rock crystal), white, yellow (citrine), brown (smoky citrine), black (morion), purple (amethyst), pink (rose quartz), green (chrysope); D - these varieties are mostly transparent, often translucent; C - other varieties are mainly multicolored, separate colors have different hues and the color is commonly caused by microscopic admixtures of other minerals; varieties: red, green, brown, yellow (jasper), banded with different colors (agate); white
Rock crystal. 95 mm. La Gardette, France

Citrine. 32 mm. Charcas, Mexico

and black bands (onyx), white and red-brown bands (sardonyx), green to red-brown with mica or hematite inclusions (aventurine), dark green with red spots (heliotrope), yellow-brown to black-brown, fibrous

Smoky quartz. 70 mm, Middle Moat Mt., U.S.A.

with silky luster (tiger’s eye), blue-gray to yellow-brown, fibrous with silky luster (falcon’s eye); S - white; L - vitreous; silky, dull; D - transparent to translucent, opaque; DE - 2.6; H - 7; CL - none; F -

Smoky quartz. 81 mm. Switzerland
conchoidal; M – long to short prismatic, acicular, dipyramidal to tabular crystals, fibrous, botryoidal and stalactitic aggregates and coatings, concretions, geodes, granular, massive.

Origin and occurrence: Magmatic in different types of rocks, mainly in granites, granitic pegmatites and volcanic rocks; metamorphic in different types of rocks, mainly in quartzites and mica schists; hydrothermal in different types of ore and Alpine-
Amethyst. 200 mm. Guerrero, Mexico

type veins; secondary in the oxidation zone of ore deposits; also in different types of sedimentary rocks and in organic remains, also in placer. Probably the most common mineral in the Earth’s crust and the most important rock-forming mineral, as well.

Large crystals of rock quartz up to 7 m (23 ft) long come from pegmatites in the Betofo region in Madagascar and from the Alpine-type veins, like Uri, Grimsel and Furka, Switzerland; perfect crystals are known from the cracks in marbles near Carrara, Italy; it also occurs in the quartz veins in Horkimer, New York and Hot Springs, Arkansas, USA. Citrine occurs mainly in granitic pegmatites and large crystals come from Goias, Brazil; from Suky and Netin, Czech Republic; from Murzinka, Ural mountains, Russia. Smoky quartz originates mostly in granitic pegmatites, it also occurs in the
Alpine-type quartz veins and in cavities of volcanic rocks. Perfect crystals up to several meters long, come from many places, the largest crystal, weighing 77 tons, was found in Kazakhstan; perfect crystals occur in pegmatites in many places in Brazil; also in Korostenskiy massif, Ukraine; in the Pikes Peak batholith, Colorado, USA; in the Alpine-type veins in Maderanertal and in Grimsel, Switzerland. Morion crystals, commonly associated with smoky citrine, were found in quartz veins and in pegmatites. Its crystals are known from St. Gotthard, Switzerland. Amethyst comes from quartz and ore veins, cavities in volcanic rocks, rare in the Alpine-type veins. Famous localities in volcanic rocks are in the states of Rio Grande do Sul and Minas Gerais, Brazil, doubly terminated crystal, weighing 5.5 tons, come from Diamantina. In Serra do Mar, Rio Grande do Sul, a cavity covered with amethyst.
crystals measuring 10 x 2 x 1 m (33 x 6 x 3 ft 3 in) was found; rich druses occur also in the ore veins in Porcura, Romania and Julimes, Mexico. Rose quartz, forming masses up to several meters in granitic pegmatites in the Rose Quartz pit, Quadesville, Ontario, Canada; in Ambositra, Madagascar. crystals up to 10 mm (7/8 in) long growing on quartz crystals, come from Sapucaia, Minas Gerais, Brazil. Dark green chrysoprase veins up to 50 mm (2 in) thick are known from serpentinites in Soklory.
Poland. Jasper is known from volcanic rocks and their contacts with sediments, locally as a result of petrification of organic matter, mainly plants, it is also known from quartz veins. Rich aggregates occur in Idar-Oberstein, Germany; in Podkrkonosi region and in Krsne hory mountains, Czech Republic; in the Petrified Forest National Park, Holbrook, Arizona, USA; in Ural mountains, Russia; in Kabamby, Madagascar. Chalcedony is mostly found in quartz veins and geodes in volcanic rocks, also in sediments. Rich aggregates come from Idar-Oberstein, Germany; Juilmes, Mexico; many localities in Uruguay and Brazil; in Huttenberg, Austria. Agates are known from cavities in volcanic rocks, rare in hydrothermal veins and in sediments. The most important localities are located in the southern part of Brazil in the state of Rio Grande do Sul; in Uruguay, also in Yemen; India; Mongolia; in several

Onyx, 65 mm, Brazil

Moss agate, 40 mm, Kraili, Bulgaria

Agate, 140 mm, Horni Halze, Czech Republic
localities in the USA; in Idar-Oberstein, Germany; in Podkrkonosi, Czech Republic. The most famous localities of onyx and sardonyx are in Brazil and Uruguay.

Rich aggregates of aventurine come from Miass, Ural Mountains, Russia; Mariazell, Austria; Belany, India. Heliotrope occurs in Idar-Oberstein, Germany; Kozakov, Czech Republic and in Brazil.

Application: important raw material in glass industry, many colored varieties, like amethyst, smoky citrine, citrine, onyx, sardonyx, and heliotrope are cut as gemstones.

Tiger's eye, 50 mm, Griqualand, South Africa
Tridymite

\[\text{SiO}_2 \]

Orthorhombic

Properties:
- **C:** colorless to white
- **S:** white
- **L:** vitreous
- **D:** transparent
- **DE:** 2.3
- **H:** 6.5-7
- **CL:** none
- **F:** conchoidal
- **M:** pseudo-hexagonal tabular crystals

Origin and occurrence: Magmatic in cavities of young felsic volcanic rocks in association with cristobalite, chalcedony and other minerals. Pseudo-hexagonal tabular crystals up to 10 mm (¼ in) in size, come from Vechec, Slovakia. Similar crystals found in Ichigayama, Japan. Crystals up to 10 mm (¼ in) occur with topaz and other minerals in the Thomas Range, Utah, USA.

Cristobalite

\[\text{SiO}_2 \]

Tetragonal

Varieties: lussatite (fibrous)

Properties:
- **C:** colorless to white
- **S:** white
- **L:** vitreous
- **D:** translucent
- **DE:** 2.3
- **H:** 6.5
- **CL:** none
- **M:** pseudo-octahedral crystals, spherical and botryoidal aggregates

Origin and occurrence: Magmatic in cavities of young felsic volcanic rocks, associated with tridymite. Crystals up to 4 mm (¼ in) are known from Cerro San Cristobal, Hidalgo, Mexico. Crystals up to 2 mm (¼ in) long occur in Vechec, Slovakia. Gray spherical aggregates come from Coso Hot Springs, California, USA.
Opal
SiO₂ · n H₂O

AMORPHOUS • • • • •

Varieties: hyalite, milky opal, fire opal, precious opal, wooden opal, geysirite.

Properties: C – colorless (hyalite), white (milky opal), red (fire opal), iridescence (precious opal), brown, red-brown, yellow, green, gray, blue; S – white; L – vitreous, dull, earthy, waxy; D – transparent to translucent, opaque; DE – 2.1; H – 5.5–6.5; CL – none; F – conchoidal; M – botryoidal and stalactitic aggregates, coatings, concretions, geodes, massive; LU – white, yellow-green, green.

Origin and occurrence: Hydrothermal in volcanic rocks and tuffs, also in various types of volcanic rocks and tuffites, in different types of sedimentary rocks, in organic remnants and hot springs, rare in
Opal. 47 mm. Opal Butte, U.S.A.

Wooden opal. 40 mm. Lubietov, Slovakia

Opal. Hydrothermal veins; secondary in the weathering zone of different types of rocks. It is often associated with chalcedony. Coatings and stalactitic aggregates of hyalite up to 50 mm (2 in) thick known from Cerroto, Mexico; Valec, Czech Republic; Klamath Falls, Oregon, USA. Milky opal occurs in Dubnik, Slovakia; Smrečik, Czech Republic and many other localities. The most famous locality of fire opal is Zimapan, Hidalgo, Mexico. Precious opal comes from many localities in Australia, e.g. Baracoo River, Queensland; Coober Pedy, Southern Australia and White Cliffs, New South Wales, where it forms rich aggregates and veins in sandstones; classic locality is Dubnik, Slovakia, where it occurs in...
andesites and was probably mined already by ancient Romans. Beautiful precious opals come also from the Virgin Valley, Nevada, USA. Petrified trees, known as wooden opal, reach lengths of several meters in the Petrified Forest National Park, Holbrook, Arizona, USA; in L’ubietova and Povraznik, Slovakia. White geysirite is known mainly from the hot springs in Iceland; Yellowstone National Park, Wyoming, USA; New Zealand.

Application: colored opal varieties, primarily precious opal and fire opal are cut as gemstones, diatomite in chemical industry.
Melanophlogite, SO$_2$, Fortullino, Italy

Melanophlogite

SiO$_2$

CUBIC

Properties: C - colorless, white; S - colorless; L - vitreous; D - transparent; DE - 2; H - 6.5; CL - none; M - pseudo-cubic crystals, spherical aggregates.

Origin and occurrence: Hydrothermal, associated with sulfur and other minerals. It was originally described from the sulfur deposit in Racalmuto, Sicily, Italy as crystals up to 4 mm (¼ in) in size. It is also known from Chvaletice, Czech Republic, where it forms crystals up to 2 mm (¼ in) in size, in Alpine-type veins.

Rutile

TiO$_2$

TETRAGONAL

Properties: C - red-brown, red, brown, yellowish, black; S - light brown; L - metallic to adamantine; D - transparent to translucent; DE - 4.2; H - 6.5; CL - good; F - conchoidal to uneven; M - short prismatic, striated crystals, common twins, acicular crystals, granular, massive.

Origin and occurrence: Magmatic and metamorphic, also in placers, together with monazite-(Ce), topaz, beryl, quartz and other minerals. The largest crystals up to 150 mm (6 in) in size come from the Mount Graves, Georgia, USA. Beautiful epitaxial intergrowths with hematite occur in Cavradischlucht, St. Gotthard, Switzerland and in Ibitiara, Bahia, Brazil. It is common as inclusions in smoky citrine (quartz) crystals from Ibitiara, Bahia and Itabira, Minas Gerais, Brazil. Knee-like crystal twins up to 70 (2¼ in) cm in size were found in the vicinity of Golcuv Jenikov and Sobeslav, Czech Republic.

Application: Ti ore.
Cassiterite

\(\text{SnO}_2 \)

TETRAGONAL

Properties:
- **C** - colorless, brown, black; **S** - white, grayish brown; **L** - metallic to adamantine, dull;
- **D** - transparent to opaque; **DE** - 6.3-7.2; **H** - 6-7; **CL** - imperfect; **F** - conchoidal to uneven; **M** - dipyramidal and short prismatic crystals, multiple twins, granular, massive.

Origin and occurrence: Magmatic in pegmatites, hydrothermal in high-temperature deposits, metamorphic and in placers, together with wolframite, topaz and other minerals. Crystal twins up to 150 mm (6 in) in size come from Horni Slavkov, Czech Republic. Crystals of similar size were also found in Panasqueira, Portugal. Fine twins up to 80 mm (3½ in) were found in Rossarden, Tasmania, Australia. Crystals up to 70 mm (2½ in) in size were found in Llallagua, colorless and transparent crystals up to 50 mm (2 in) in size in Viloco, Bolivia. Crystals up to 110 mm (4½ in) occurred lately in Tenkergin, Chukotka, Russia. Crystals up to 130 mm (5½ in) in size are known from pegmatites in Minas Gerais, Brazil (Fazenda do Funi). New finds of shiny crystals up to 100 mm (4 in) long were made in Hunan and Yunnan provinces, China.

Application: Sn ore.

Plattnerite

\(\text{PbO}_2 \)

TETRAGONAL

Properties:
- **C** - black; **S** - brown; **L** - metallic to adamantine; **D** - opaque; **DE** - 9.6; **H** - 5.5; **CL** - none; **M** - acicular crystals, botryoidal aggregates, massive.

Origin and occurrence: Secondary, as a result of the oxidation of other Pb minerals, together with pyromorphite, hemimorphite and other minerals. Fine crystals come from Mina Ojuela, Mapimi, Durango, Mexico and from the Blanchard mine, New Mexico, USA. Botryoidal aggregates, weighing up to 100 kg (220 lb), were found in the Morning mine, Mullan, Idaho, USA.

Application: Pb ore.
Pyrolusite

MnO₂

TETRAGONAL

Properties: C - black, steel-gray; S - black; L - metallic to dull; D - opaque; DE - 5.1; H - 6-6.5; CL - perfect; F - uneven; M - prismatic to acicular striated crystals, stalactitic and botryoidal aggregates, granular, massive.

Origin and occurrence: Secondary, as a result of alteration of manganite and other primary Mn minerals, also hydrothermal. Crystals up to 20 mm (¾ in) long come from Horni Blatna, Czech Republic. Radial shiny aggregates were found in Ohrenstock, Germany. It occurred in lifdef, Germany, too. Large sedimentary Mn deposits, where pyrolusite is the main constituent, are known near Chjaturi, Georgia or near Nikopol, Ukraine. Crystals are reported also from Tsumeb, Namibia and Hotazel, South Africa.

Application: important Mn ore.

Hollandite

Ba(Mn⁴⁺,Mn²⁺)₂O₄

MONOCLINIC

Properties: C - gray-black; S - black; L - submetallic; D - opaque; DE - 5; H - 6; CL - good; M - short prismatic crystals, racemous and columnar aggregates.

Coronadite

Pb(Mn⁴⁺,Mn²⁺)₂O₄

TETRAGONAL

Properties: C - black, black-gray; S - brown-black; L - submetallic to dull; D - opaque; DE - 5.4; H - 4.5-5.5; M - botryoidal crusts with fibrous structure, massive.

Origin and occurrence: Secondary in the oxidation zone of Mn deposits. Spherical aggregates up to 100 mm (4 in) in diameter come from the Bou Tazoult mine, Imini, Morocco. Small crystals were found in the Beltana mine, Southern Australia, Australia and in the Silver Bill mine, Arizona, USA.

Todorokite

(Mn⁴⁺,Ca,Mg)Mn³⁺₂O₇·H₂O

MONOCLINIC

Properties: C - gray, brown-black, black; S - brown;
L - metallic to dull; D - opaque; DE - 3.5-3.8; H - 1;
CL - perfect; M - platy crystals, stalactitic and
nodular aggregates.

Origin and occurrence: Secondary mineral, as a result
of the oxidation of Mn minerals. Crystals are reported
from several mines in the Kalahari region, South
Africa (Hotazel, Smart). It was originally described
from the Todoroki mine, Hokkaido, Japan. It is an
important constituent of oceanic Mn concretions.

Ferrotapiolite

\[\text{FeTa}_2\text{O}_6 \]

TETRAGONAL

Properties: C - black, brown; V - red-brown; L - sub-
metallic, adamantine, resinous; D - opaque; DE - 7-
7.8; H - 6-6.5; CL - none; F - uneven to conchoidal;
M - dipyrvaldial and short prismatic crystals, massive.

Origin and occurrence: Magmatic in pegmatites,
together with manganotantalite, microite, cassiterite
and other minerals. Crystals up to 40 mm (17/6 in) in
diameter are known from the vicinity of Governador
Valadares, Minas Gerais, Brazil. A crystal 120 mm
(47/6 in) long has been described from Angriff,
Morocco. Short prismatic crystals come from
pegmatites near Topsham and Paris, Maine, USA.

Ilmenorutile

\[(\text{Ti,Nb,Fe})_2\text{O}_2 \]

TETRAGONAL

Properties: C - black; S - brown; L - submetallic; D
- opaque; DE - 4.2; H - 6-6.5; CL - good; F - con-
choidal to uneven; M - prismatic crystals, granular.

Origin and occurrence: Magmatic in pegmatites,
together with schorl, zircon, fluorapatite and other
minerals. Prisms several cm long come from Udraz
near Pisek, Czech Republic. It is also known from the
vicinity of Miass, Ural mountains, Russia and Evje,
Norway.
Anatase

\[\text{TiO}_2 \]

TETRAGONAL

Properties:
- **C:** black-gray, brown, red-brown, blue, rare colorless; **S:** white; **L:** submetallic to adamantine; **D:** transparent to opaque; **DE:** 3.8-4; **H:** 5.5-6; **CL:** perfect; **F:** conchoidal; **M:** dipyramidal and tabular crystals.

Origin and occurrence: Hydrothermal in the Alpine-type veins, associated with brookite and quartz, also sedimentary and metamorphic. Beautiful crystals up to 50 mm (2 in) long were found in Alpa Lercheltini, Binntal, Switzerland. Famous black-blue crystals reaching up to 30 mm (1 3/4 in) come from Matskorhae, Hardangervidda, Norway. Crystals up to 15 mm (1/2 in) were recently found in Dodo, Polar Ural, Russia. Crystals up to 30 mm (1 3/4 in) in size occurred in the Old Lot and Vulcan mines, Colorado, USA.

Tellurite

\[\text{TeO}_2 \]

ORTHORHOMBIC

Properties:
- **C:** yellow, yellow-orange; **S:** yellowish; **L:** adamantine; **D:** transparent; **DE:** 5.8; **H:** 2; **CL:** perfect; **M:** acicular and thin tabular crystals, radial aggregates, pulverulent.

Origin and occurrence: Secondary, resulting from the oxidation of AuBTe ores. Crystals up to 10 mm (3/8 in) long occurred in the Kawazu and Susaki mines, Japan. Beautiful specimens were found in Moctezuma, Sonora, Mexico; it also comes from Cripple Creek, Colorado, USA.

Brookite

\[\text{TiO}_2 \]

ORTHORHOMBIC

Properties:
- **C:** light to dark brown, yellow-brown, black; **S:** white to gray; **L:** submetallic to adamantine; **D:** transparent to translucent, opaque; **DE:** 4.1; **H:** 5.5-6; **CL:** imperfect; **F:** conchoidal to uneven; **M:** tabular, dipyramidal, long and short prismatic crystals.

Origin and occurrence: Hydrothermal along the fissures of the Alpine-type veins and in granitic and alkaline pegmatites; it occurs as pseudo-morphs after titanite and ilmenite; also in sedimentary rocks. Perfect tabular crystals up to 50 mm (2 in) in size found in Rieder Tobel, Switzerland; Magnet Cove, Arkansas, USA; Passo di Viza, Italy. New finds of crystals up to 50 mm in size made in Dodo, Polar Ural, Russia.
Tellurite, 1 mm x, Fata Bais, Romania

Ferberite

FeWO$_4$

MONOCLINIC

Properties: C - black; S - brown-black to black; L - submetallic; D - opaque; DE - 7.5; H - 4-4.5; CL - perfect; F - uneven; M - short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in high- to medium-temperature ore veins, in greisens and skarns; rare magmatic in granitic pegmatites and granites; it also occurs in placers. It is usually associated with cassiterite, scheelite, sulfides and quartz. Perfect tabular crystals up to 120 mm (4.72 in) in size found in the Quartz Creek mine, Colorado, USA; also in Cinovec, Czech Republic; Panasqueira, Portugal; Ehrenfriedersdorf, Germany and Potosí, Bolivia.

Application: W ore.

Ferberite, 68 mm, Mundo Nuevo, Peru

Hubnerite

MnWO$_4$

MONOCLINIC

Properties: C - yellow-brown, red-brown, black; S - yellow-brown to black-gray; L - submetallic; D - translucent to opaque; DE - 7.2; H - 4-4.5; CL - perfect; F - uneven; M - short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in high- to medium-temperature ore veins, in greisens; rarely magmatic in granitic pegmatites; also in placers. Perfect tabular to short prismatic crystals up to 25 cm (9.84 in) in size, come from the Huayllapon mine, Pasto Bueno, Peru; also from Bais Sprie, Romania; Kara-Oba, Kazakhstan; the Sweet Home mine, Alma and Silverton, Colorado, USA.

Application: W ore.

Hubnerite, 39 mm, Silverton, U.S.A.
Titanowodginite. 20 mm, Tanco, Canada

+ Titanowodginite
 MnTiTa₂O₆
 ORTHORHOMBIC
 Properties:
 C - dark brown, black; S - dark brown; L - submetallic; D - translucent to opaque; DE - 6.9; H - 5.5; CL - imperfect; F - uneven; M - dipyramidal crystals, granular.
 Origin and occurrence: Magmatic in granitic pegmatites. Dipyramidal crystals up to 10 mm (3/8 in) long occur in the Tanco mine, Bernic Lake, Manitoba, Canada.
 Application: Ta ore.

Ferrocolumbite, 90 mm, Middletown, U.S.A.

+ Ferrocolumbite
 FeNb₂O₆
 ORTHORHOMBIC
 Properties:
 C - black, red-brown; S - red-brown to black; L - submetallic; D - translucent to opaque; DE - 5.2; H - 6; CL - good; F - uneven to conchoidal; M - long to short prismatic and tabular crystals, granular, massive.
 Origin and occurrence: Magmatic in granitic pegmatites and granites; rare hydrothermal in high-temperature ore veins and in greisens; also in placers. Tabular crystals up to 1 m (39⅔ in) in size occur in granitic pegmatites near Custer and Keystone, South Dakota, USA; in Malakialina, Madagascar; Ichikawa, Japan; masses, weighing up to 270 kg (594 lb) come from the Meyers quarry, Colorado, USA.
 Application: Nb ore.

Manganotantalite, 19 mm, Nuristan, Afghanistan

+ Manganotantalite
 MnTa₂O₆
 ORTHORHOMBIC
 Properties:
 C - red, red-brown, black-brown, black; S - dark red to black; L - submetallic; D - translucent to opaque; DE - 8.0; H - 6-6.5; CL - good; F - uneven
 Origin and occurrence: Magmatic in granitic pegmatites. Dipyramidal crystals up to 10 mm (3/8 in) long occur in the Tanco mine, Bernic Lake, Manitoba, Canada.
 Application: Ta ore.
Euxenite-(Y). 40 mm. Ambatofotsy, Madagascar

Aeschynite-(Ce). 45 mm. Hittero, Norway

Orthorhombic • •

Properties:
C - black with brownish and green hues; S - gray, yellowish, brownish; L - submetallic, resinous; D - translucent to opaque; DE - 4.6; H - 6; CL - none; F - conchoidal; M - prismatic to tabular crystals, granular, massive; R - locally weakly radioactive, commonly metamict.

Origin and occurrence: Magmatic in granitic pegmatites and granites; also in placers. Crystals up to 100 mm (4 in) in size come from Li-bearing pegmatites in the Tanco Mine, Bernic Lake, Manitoba, Canada; also from Sao Jose da Safira, Minas Gerais, Brazil.

Application: Ta ore.

Euxenite-(Y)
(Y,Ce,U,Th) (Nb,Ta,Ti)O

Stibiotantalite

SbTaO

ORTHORHOMBIC • •

Properties:
C - yellow, yellow-brown, red-brown, yellow-green; S - yellow-brown; L - submetallic, vitreous, resinous; D - transparent to translucent; DE - 7.5; H - 5-5.5; CL - good; F - uneven to conchoidal; M - prismatic, tabular and dipyramidal crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; also in placers. Crystals up to 120 mm (47/8 in) in size are known from Kragerø, Norway; from Ankarehö, Madagascar.

Application: Ta ore.

Aeschynite-(Ce)
(Ce,Ca) (Ti,Nb)O

Stibiotantalite, 10 mm grain. Dohrů Voda, Czech Republic
Uraninite

\[\text{UO}_2 \]

CUBIC

Properties:
- **C** - black, black-brown, black-gray; **S** - black, black-brown to greenish; **L** - submetallic, greasy, earthy; **D** - opaque; **DE** - 7.5-10.6; **H** - 5-6.
- Earthy aggregates 3; **CL** - imperfect; **F** - uneven to conchoidal; **M** - cubic crystals, botryoidal aggregates, granular, massive; **R** - strong radioactive.

Origin and occurrence:
Mainly hydrothermal in ore veins, skarns; magmatic in granitic pegmatites; in sedimentary rocks; also in placers. Usually associated with other U minerals, e.g. coffinite and secondary alteration products, mainly U micas. Perfect crystals up to 100 mm (4 in) in size and weighing up to 2.5 kg (5 lb 8 oz) come from the Fissure mine, Wilberforce, Ontario, Canada, where they occur in simple pegmatites, cross-cutting marbles.
Crystals are also known from Dieresis, Spain and Shinkolobwe, Zair. Rich botryoidal aggregates were found in Jáchymov and Slavkovice, Czech Republic; in Bois-Noirs and Margnac, France.

Application: U ore.
Gibbsite
\[
\text{Al(OH)}_3
\]

MONOCLINIC

Properties:
- **C** - colorless, gray, white, greenish;
- **S** - white;
- **L** - vitreous, pearly;
- **D** - transparent to translucent;
- **DE** - 2.4;
- **H** - 2.5-3.5;
- **CL** - perfect;
- **F** - uneven;
- **M** - tabular crystals, lamellar and earthy aggregates, coatings and stalactitic films, granular, massive.

Origin and occurrence: Hydrothermal as a product of alteration Al-rich rocks; secondary in the oxidation associated with goethite; metamorphic in weakly metamorphosed Al-rich rocks, typically with diaspore; a constituent of bauxites. Tabular crystals up to 100 mm (4 in) in size were found in Zlatoust, Ural mountains, Russia; also in Villa Rica, Minas Gerais, Brazil.

Brucite
\[
\text{Mg(OH)}_2
\]

TRIGONAL

Properties:
- **C** - colorless, gray, white, bluish, blue, yellow, brown;
- **S** - white;
- **L** - vitreous, pearly;
- **D** - transparent to translucent;
- **DE** - 2.4;
- **H** - 2.5;
- **CL** - perfect;
- **F** - uneven;
- **M** - tabular crystals, foliated, acicular and earthy aggregates, granular, massive.

Origin and occurrence: Hydrothermal in veins in serpentinites or dolomitic marbles, a product of periclase alteration; rare metamorphic in skarns and marbles. Perfect crystals up to 18 cm in size, come from the Low's mine, Pennsylvania and the Tilly Foster mine, New York, USA; also known from Asbestos, Quebec, Canada; Predazzo, the Alps, Italy; blue crystals up to 50 mm (2 in) in size were found in the Bazhenovskoye deposit, Azbest, Ural mountains, Russia.

Diaspore
\[
\text{AlO(OH)}
\]

ORTHORHOMBIC

Properties:
- **C** - colorless, gray, white, greenish, yellowish, pink;
- **S** - white;
- **L** - vitreous, pearly;
- **D** - transparent to translucent;
- **DE** - 3.4;
- **H** - 6.5-7;
- **CL** - perfect;
- **F** - conchoidal;
- **M** - tabular crystals, foliated aggregates, stalactitic films, granular, massive.

Origin and occurrence: Hydrothermal as a product of alteration Al-rich minerals, e.g. andalusite, typically with pyrophyllite and corundum; metamorphic in Al-rich rocks; a constituent of bauxites. Tabular crystals up to 120 mm (4 3/4 in) in size come from Menderess, Turkey; also from Naxos, Greece; Chester, Massachusetts, USA.
Goethite. 77 mm. Santa Eulalia, Mexico

Goethite. 60 mm. Pribram, Czech Republic

Goethite
FeIIIO(OH)

ORTHORHOMBIC • • • •

Varieties: velvet ore

Properties: C – black-brown, yellow-brown, brown; S – yellow-brown; L – submetallic, metallic, silky, earthy; D – translucent to opaque; DE – 4.3; H – 5–5.5; CL – perfect; F – uneven to conchoidal; M – acicular to prismatic crystals, botryoidal aggregates, commonly with radial structure, coatings and stalactitic films, earthy, granular, massive.

Origin and occurrence: Secondary as one of the most common minerals of the oxidation zone of ore deposits, it forms a significant part of limonite; hydrothermal in ore veins, in cavities in pegmatites and volcanic rocks. It forms pseudo-morphs after pyrite and other Fe sulfides. Rich botryoidal aggregates of velvet ore with a velvety surface come from Pribram, Czech Republic; acicular crystals up to 50 mm (2 in) long are known from Bottallack and Redruth, Cornwall, UK; it also occurs in Siegen and Horhausen, Germany; in Florissant, Colorado, USA.

Application: Fe ore.

Manganite
MnIIIO(OH)

MONOCLINIC • • • •

Properties: C – black to black-gray; S – red-brown to black; L – submetallic to dull; D – opaque; DE – 4.3; H – 4; CL – perfect; F – uneven to conchoidal; M – long to short prismatic crystals, acicular and earthy aggregates, concretions, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature ore veins, together with quartz; secondary in the oxidation zone of ore deposits; sedimentary and rare metamorphic in Mn-rich rocks. Druses of black crystals up to 40 mm (1 3/4 in) long come from the classic locality Ilfeld, Germany; it also occurs in Ohrenstock and Ilmenau, Germany; in Nikopol, Ukraine; in Sterling Hill, New Jersey, USA; in the N'Chwaning No. 2 mine, Kuruman, South Africa.

Application: Mn ore.

Lepidocrocite
FeIIO(OH)

ORTHORHOMBIC • • •

Properties: C – dark red to red-brown; S – orange to brick-red; L – submetallic, adamantine to silky; D – transparent to opaque; DE – 4.0; H – 5; CL – perfect; F – uneven to conchoidal; M – tabular to short prismatic crystals, acicular, bladed and earthy aggregates, concretions, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits, overgrown on botryoidal goethite. It occurs together with goethite as a constituent of limonite; its tabular crystals and their aggregates are known from Herdorf, Germany and Rancie, France.
Lithiophorite
\((\text{AI,LI})\text{Mn}^{4+}\text{O}_2\text{(OH)}_2\)

MONOCLINIC

Properties: C - black, commonly with bluish tint; S - black-gray to black; L - metallic to dull; D - opaque; DE - 3.3; H - 3; CL - perfect; F - uneven; M - scaly crystals, botryoidal and earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits and along the cracks in sedimentary rocks. Botryoidal aggregates occur in Schneeberg, Germany; Jivina and Zajecov, Czech Republic; Miyazaki, Japan.

Lithiophorite. 60 mm. Rangersdorf, Germany

Curite
\(\text{Pb}_2\text{U}_2\text{O}_{17} \cdot 4 \text{H}_2\text{O}\)

ORTHORHOMBIC

Properties: C - dark orange to red-orange; S - light orange; L - adamantine to earthy; D - transparent to translucent; DE - 7.4; H - 4-5; CL - good; F - uneven; M - acicular crystals, earthy aggregates, coatings, massive; R - strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, associated with other secondary U minerals, e.g. torbernite, kasolite and uranophane. Rich aggregates were found in Shinkolobwe, Zaire; also known from La Crouzille, France; South Alligator, Northern Territory, Australia.

Curite. 30 mm. Shinkolobwe, Zaire

Manganite. 85 mm. Ilfeld, Germany

Lithiophorite. 85 mm. Ilfeld, Germany

Curite. 30 mm. Shinkolobwe, Zaire
5. Carbonates

Magnesite

\[\text{MgCO}_3 \]

TRIGONAL

Properties: C - colorless, white, yellowish, brownish, black; S - white; L - vitreous to dull; D - transparent; DE - 3.1; H - 4; CL - perfect; F - conchoidal; M - rhombohedral and prismatic crystals, massive cleavable aggregates, earthy; LU - occasionally blue or green.

Origin and occurrence: Rarely magmatic, mainly hydrothermal metasomatic and metamorphic. The largest crystals are known from Brumado, Bahia, Brazil, reaching up to 1 m (39") in size, embedded in metamorphosed dolomites. Crystals in cavities in the same locality are up to 50 mm (2") in size. Also crystals up to 50 mm (2") found in the Eugui quarries, Spain. Crystals up to 10 mm (\(\frac{7}{16}\)") in size come also from Val Malenco, Italy. It prevails as massive aggregates, forming huge deposits, like Veitsch, Austria; Liao-Tung, China. Many deposits are located in Slovakia (Jelsavska Dubrava, Hnusta).

Application: heat-resistant material.

Calcite

Properties: C - white, gray, green, pink, blue; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 4.4; H - 4-5; CL - perfect; F - conchoidal to uneven; M - rhombohedral crystals, botryoidal and stalactitic aggregates, massive; LU - sometimes green or blue.

Origin and occurrence: Supergene, as a result of oxidation of the primary Zn ores, associated with other supergene Pb minerals. The largest yellow scalenohedra crystals up to 40 mm (1\(\frac{3}{16}\)") in size come from Broken Hill, New South Wales, Australia. Pink crystals, up to 30 mm (1\(\frac{3}{16}\)") in length occurred in Tsumeb, Namibia. World famous blue-green botryoidal crusts up to 100 mm (4") thick found in the Kelly Mine, Magdalena, New Mexico, USA. Nice aggregates and banded stalactites described from Monte Poni, Sardinia, Italy.

Smithsonite

\[\text{ZnCO}_3 \]

TRIGONAL

Properties: C - white, gray, green, blue; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 3.1; H - 4; CL - perfect; F - conchoidal; M - rhombohedral and prismatic crystals, massive cleavable aggregates, earthy; LU - occasionally blue or green.

Origin and occurrence: Rarely magmatic, mainly hydrothermal metasomatic and metamorphic. The largest crystals are known from Brumado, Bahia, Brazil, reaching up to 1 m (39") in size, embedded in metamorphosed dolomites. Crystals in cavities in the same locality are up to 50 mm (2") in size. Also crystals up to 50 mm (2") found in the Eugui quarries, Spain. Crystals up to 10 mm (\(\frac{7}{16}\)") in size come also from Val Malenco, Italy. It prevails as massive aggregates, forming huge deposits, like Veitsch, Austria; Liao-Tung, China. Many deposits are located in Slovakia (Jelsavska Dubrava, Hnusta).

Application: heat-resistant material.
Siderite. 26 mm. Governador Valadares, Brazil

Siderite

FeCO₃

TRIGONAL

Properties: C - yellow, brown, black; S - yellowish-white; L - vitreous; D - translucent; DE - 4; H - 4; CL

Origin and occurrence: Hydrothermal in medium- and low-temperature deposits, sedimentary. Crystals up to 40 cm long found in Mont St.-Hilaire, Quebec, Canada. Crystals up to 100 mm (4 in) in size come from Panasqueira, Portugal. Crystals up to 30 mm (1¼ in) in size occurred in Neudorf, Germany. Rhombs up to 20 mm (¾ in) also found in Pribram, Czech Republic. Pseudo-morphs of goethite after siderite up to 70 mm (2¾ in) across described from Pikes Peak, Colorado, USA. Deposits of massive siderite in Erzberg and Hüttenberg, Austria yielded crystals up to 50 mm (2 in) long. Fine crystals reported from Tavistock, Devon and Redruth, Cornwall, UK.

Application: important Fe ore.

Sphaerocobaltite

CoCO₃

TRIGONAL

Properties: C - pink, gray, brown; S - red; L - vitreous; D - transparent to translucent; DE - 4.1; H - 4; CL - perfect; M - scalenohedral and rhombohedral crystals, radial aggregates, massive.

Origin and occurrence: Secondary, as a product of the oxidation of primary Co minerals. The best specimens, with crystals up to 30 mm (1¼ in) long, come from Zaire (Musonoi; Kakanda). Crystals up to 10 mm (4 in) long known from Bou Azzer, Morocco.
Rhodochrosite, 117 mm, Sweet Home Mine, U.S.A.

Rhodochrosite

MnCO_3

TRIGONAL

Properties:
- C – white, pink, red brown, locally black coatings on crystals; S – white; L – vitreous; D – transparent to translucent; DE – 3.6; H – 3.5-4; CL – perfect; F – conchoidal to uneven; M – rhombohedral and scalenohedral crystals, hemispherical and botryoidal aggregates, granular, massive.

Origin and occurrence: Only rare in pegmatites, hydrothermal in medium- and low-temperature veins, sedimentary and metamorphic. The most beautiful crystals come from the Sweet Home mine, Alma, Colorado, USA, where rhombs up to 150 mm (6 in) in size occur, associated with purple fluorite, hubnerite, tetrahedrite and other minerals. Beautiful dark red scalenohedra, up to 100 mm (4 in) found in the N’Chwaning No.1 and 2 mines, Kuruman, South Africa. Pink rhombs up to 80 mm (3½ in) come from Silverton, Colorado, USA. Nice pink hemispheres and botryoidal aggregates are known from Cavnic and Baia Sprie, Romania. Similar specimens occurred in Huaron, Peru. Pink banded crusts and stalactites were found in the Mina Capillitas, Catamarca, Argentina. Pink rhombs, associated with bertrandite, were lately found in Kounrad, Kazakhstan.

Rhodochrosite, 70 mm, Mina Capillitas, Argentina
Calcite

CaCO₃

TRIGONAL

Properties:
- **C** - colorless, white, gray, yellow, brown, pink, red, blue, green, black;
- **S** - white;
- **L** - vitreous to pearly;
- **D** - transparent to opaque;
- **DE** - 2.7;
- **H** - 3;
- **CL** - perfect;
- **F** - conchoidal;
- **M** - crystals of various habit, concretions, stalactites, oolitic aggregates, granular, massive;
- **LU** - sometimes red to orange.

Origin and occurrence: One of the most common minerals, resulting from a wide range of conditions, it is magmatic, hydrothermal, sedimentary, metamorphic and secondary, it occurs in various parageneses. Large crystals found in many localities throughout the world. Pinkish and yellow crystals over 500 mm (20 in) long come from Joplin, Missouri and from the Elmwood mine, Tennessee, USA. Beautiful calcite crystals, crystallographically of very complex habits, found in Dalnegorsk, Russia. Nice calcite specimens occurred also in Mexico (Naica, Chihuahua; Charcas, San Luis Potosi). European localities, like Pribram, Czech Republic; St. Andreasberg, Germany; Kongsberg, Norway are famous by their calcites, too. Wine yellow, complicated crystals are known from the Sarbayskoye deposit in Rudnyi, Kazakhstan. Clear cleavable aggregates of the birefringent calcite (so called Iceland spar) were found in basalt cavities in Helgustadir, Iceland. The largest of them reached up to 6 x 2 m (20 x 6 ft 6 in) in size. Very nice scalenohedra up to 80 mm (3½ in) long with copper inclusions occur in Keweenaw Peninsula, Michigan, USA. Perfect scalenohedra and their twins up to 100 mm (4 in) long are known from Egremont and Frizington, UK. Beautiful butterfly twins up to 80 mm (3½ in) recently reported from Guiyang, Hunan, China. Crystals of calcite with sand inclusions up to 100 mm (4 in) in size come from the vicinity of Fontainebleau, France.

Application: building industry, optical industry.
Dolomite

\[\text{CaMg}(\text{CO}_3)_2 \]

TRIGONAL • • • •

Properties:
- C: gray-white, pink, red, green, brown, black; S: white; L: vitreous to pearly; D: transparent to translucent; DE: 2.9; H: 3.5; CL: perfect; F: conchoidal; M: rhombohedral crystals, massive.

Origin and occurrence: Magmatic in pegmatites, hydrothermal, metasomatic, sedimentary and metamorphic, together with siderite, magnesite, calcite and other minerals. Crystals up to 100 mm (4 in) long found in Brumado, Bahia, Brazil. Fine crystals also occurred in Banska Stiavnica, Slovakia and in Cavinic, Romania. Crystals up to 200 mm (7.9 in) in size come from Eugui, Spain. Crystals up to 150 mm (6 in) long found in cavities in dolomitic rocks in Lengenbach, Binntal, Switzerland. Crystals several cm long known from Jachymov, Czech Republic. Large accumulations of massive dolomite are common in magnesite deposits.

Application: Metallurgy, heat-resistant material.

Ankerite

\[\text{CaFe}(\text{CO}_3)_2 \]

TRIGONAL • • • •

Properties:
- C: white, yellowish, brown-yellow; S: white; L: vitreous to pearly; D: translucent; DE: 3; H: 3.5-4; CL: perfect; F: conchoidal; M: rhombohedral crystals, granular.

Origin and occurrence: Hydrothermal in medium- and low-temperature veins, also sedimentary and metamorphic, together with siderite and other minerals. Crystals up to 50 mm (2 in) occurred in the Tui mine, New Zealand. Brown rhombs up to 40 mm (1.6 in) in size known from Gilman, Colorado, USA. Yellowish crystals up to 10 mm (0.4 in) come from concretions near Kladno, Czech Republic. Massive aggregates are common in metasomatic deposits of siderite (e.g., Nizna Slana, Slovakia).
Kutnohorite

CaMn(CO$_3$)$_2$

TRIGONAL • • •

Properties: C - white, gray, pink, yellowish; S - white; L - vitreous; D - translucent; DE - 3.1; H - 3.5-4; CL - perfect; F - conchoidal; M - poorly developed crystals, granular, massive.

Origin and occurrence: Hydrothermal and metamorphic, associated with ankerite, quartz and other minerals. Poorly developed crystals are known from Kutna Hora, Czech Republic. Small crystals several mm in size are described from Mont St.-Hilaire, Quebec, Canada. Large crystals occurred in Moncurc, North Carolina, USA. Small gray-white crystals were found in Broken Hill, New South Wales, Australia.

Huntite

CaMg(CO$_3$)$_2$

TRIGONAL • • •

Properties: C - white; S - white; L - earthy; D - opaque; DE - 2.7; H - 1.5; CL - none; F - conchoidal; M - fibrous aggregates, earthy.

Origin and occurrence: Secondary mineral resulting from the oxidation of dolomite, associated with magnesite and dolomite. Fine fibrous aggregates come
Aragonite

Aragonite is a calcium carbonate mineral with the chemical formula CaCO₃. It is classified as orthorhombic in crystal system. Some common varieties of aragonite include flos ferri, hot-spring tufa, peastone, and turnowitzite. Its properties include colorless, white, yellow, reddish, greenish, purplish, bluish, and gray. S is white, and L is vitreous. D is transparent to opaque, DE is 3, H is 3.5-4.5, CL is imperfect, F is conchoidal, and M is prismatic.

Origin and occurrence: Aragonite is a primary mineral as a late hydrothermal mineral of high-temperature deposits. It is commonly found as a product of the oxidation of siderite and pyrite. It also results from the precipitation of thermal springs, making it sedimentary and metamorphic. Fine white prismatic crystals up to 70 mm (2¾ in) long are found in Boquira mine, Bahia, Brazil. Similar crystals come from sulfur deposits in Cianciano, Italy, and Tarnobrzeg, Poland. The best aragonite crystals in the world are known from the gossan of the magnesite deposit in Podrecany, Slovakia, where druses of crystals up to 200 mm (7¾ in) long were found. Wine yellow crystals up to 100 mm (4 in) long occurred in cavities of volcanic rocks in Horenec near Bilina, Czech Republic. These crystals were the only gem rough, suitable for faceting, in the world. Very interesting copper pseudo-morphs after aragonite come from Corocoro, Bolivia. Banded and oolitic aggregates found in Karlovy Vary, Czech Republic. Dendritic aggregates from Erzberg, Austria, and elsewhere are known as flos ferri.

Application: decorative stone.

From Koksin, Czech Republic, it also occurs in the Alam Mar deposit, Nevada, USA. Masses of aggregates are known from the Boquira mine, Bahia, Brazil.
Strontianite, SrCO₃
ORTHORHOMBIC

Properties: C - colorless, gray, yellowish, reddish, brown; S - white; L - vitreous to resinous; D - transparent to translucent; DE - 3.8; H - 3.5; CL - perfect; F - conchoidal to uneven; M - prismatic and acicular crystals, columnar and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, in cavities of volcanic rocks, mainly sedimentary, together with calcite and zeolites. Crystals up to 80 mm (3 ⅜ in) long occur near Witherite. 20 mm x, Alston Moor, UK

Witherite, BaCO₃
ORTHORHOMBIC

Properties: C - white, gray, yellowish; S - white; L - vitreous to greasy; D - translucent; DE - 4.3; H - 3.5; CL - good; F - uneven; M - pseudo-hexagonal dipyramidal crystals, fibrous and botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature deposits with fluorite, barite, calcite and other minerals. Beautiful yellowish crystals up to 120 mm (4 ¾ in) long come from the Minerva No. 1 mine, Cave-in-Rock, Illinois, USA. Crystals, up to 70 mm (2 ¾ in) in size occurred in Hexham and Alston Moor, England, UK. Its pseudo-hexagonal crystals or botryoidal aggregates were very rare in Pribram, Czech Republic.

Cerussite, PbCO₃
ORTHORHOMBIC

Properties: C - colorless, whitish, yellow, black; S - white; L - greasy to adamantine; D - translucent; DE - 6.6; H - 3.3.5; CL - good; F - conchoidal; M -
prismatic and pyramidal crystals, common trillings and twins, granular, massive; LU - sometimes yellowish.

Origin and occurrence: Secondary mineral, resulting from the oxidation of galena and other Pb minerals, together with pyromorphite, vanadinite, barite and other minerals. The best specimens come from Tsumeb, Namibia, where trillings up to 200 mm (7.8 in) in diameter occurred. Large twins also known from Broken Hill, New South Wales, Australia. Beautiful crystals up to 50 mm (2 in) in size reported from Mibladen, Morocco. Fine crystals up to 50 mm (2 in) long found in Stribro, Czech Republic. Typical white acicular crystals, up to 60 mm (2.4 in) long come from the Flux mine, Arizona, USA.

Barytocalcite
BaCa(CO$_3$)$_2$

MONOCLINIC

Properties: C - colorless, white, gray, yellowish; S - colorless; L - vitreous to resinous; D - transparent to translucent; DE - 3.7; H - 4; CL - perfect; F - conchoidal to uneven; M - prismatic, often striated crystals, massive; LU - light yellow.

Origin and occurrence: Hydrothermal in low-temperature veins, together with calcite, barite and other minerals. Crystals several cm in size and cleavable masses are known from Alston Moor, Cumbria, UK. Imperfect crystals about 10 mm (0.4 in) in size occurred in Stribro, Czech Republic. It is also described from Freiberg, Germany and from Langban, Sweden.
Azurite

Cu₃(CO₃)₂(OH)₂

MONOCLINIC

Properties: C - blue; S - blue; L - vitreous; D - transparent to opaque; DE - 3.8; H - 3.5; CL - perfect; F - conchoidal; M - tabular and prismatic crystals, pulverulent.

Origin and occurrence: Secondary, resulting from the oxidation of Cu sulfides, mainly associated with malachite. Crystals up to 200 mm (7 7/8 in) long come from Tsumeb, Namibia. Crystals from Touissit, Morocco reach up to 70 mm (2 3/4 in). Tabular crystals up to 50 mm (2 in) in size found in Chessy near Lyon, France. Famous crystals up to 50 mm (2 in) across occurred in the Copper Queen mine in Bisbee, Arizona, USA. Fine azurite concretions with crystals on the surface come from La Sal, Utah, USA. Crystals up to 130 mm (5 1/4 in) in size were found in the Yang Chweng Mine, Guang Dong, China. **Application:** Cu ore.

Malachite

Cu₂(CO₃)(OH)₂

MONOCLINIC

Properties: C - green; S - light green; L - vitreous, dull, earthy; D - opaque; DE - 4.1; H - 3.5-4; CL - perfect; F - conchoidal to uneven; M - acicular and prismatic crystals, botryoidal aggregates, stalactites, massive.

Origin and occurrence: The most common supergene mineral of Cu, associated with azurite, cuprite and other minerals. Crystals up to 30 mm (1 7/8 in) in size occur in Kambove, Zaire. Crystals up to 20 mm (4 1/8 in) also found in Rudabanya, Hungary. Pseudomorphs after azurite crystals up to 100 mm (4 in) in size known from Tsumeb; pseudomorphs after cuprite crystals up to 50 mm in size come from Onganja, Namibia. The blocks of banded malachite weighing up to 250 tons occurred in Mednorudniansk, Ural mountains, Russia. Similar material in huge quantities come from many deposits in Shaba.

Malachite, 63 mm, Mashamba West, Zair

Azurite, 48 mm, Touissit, Morocco
province, Zaire, where stalactites up to 500 mm (20 in) long were also found.

Application: Cu ore, production of decorative objects and jewelry.

Rosasite
\((\text{Cu,Zn})_2(\text{CO}_3)(\text{OH})_2\)

Properties: C - green, blue; S - greenish; D - opaque; DE - 4.0-4.2; H - 4.5; CL - good; M - small acicular crystals, fibrous and botryoidal crusts. Origin and occurrence: Secondary, forming in the oxidation zone of Cu and Zn deposits, together with other secondary minerals of Cu. Spherical aggregates of acicular crystals up to 10 mm (3/8 in) found in Mina Ojuela, Mapimi, Durango, Mexico. Similar finds were made in Bisbee, Arizona, USA.

Hydrozincite
\(\text{Zn}_5(\text{CO}_3)_2(\text{OH})_6\)

Properties: C - white, yellowish; S - white; L - pearly to dull; D - opaque; DE - 4; H - 2-2.5; CL - perfect; F - conchoidal; M - tabular crystals, massive, earthy; LU - locally blue.

Origin and occurrence: Secondary, resulting from the oxidation of sphalerite, together with cerussite, smithsonite and hemimorphite. Small crystals are known from Mapimi, Durango, Mexico. Spherical aggregates, several mm in diameter, were found in Sterling Hill, New Jersey, USA. Stalactites and thick crusts occurred in Long-Kieng, Burma. Crusts and stalactites were also described from Bleiberg, Austria; from Mezica, Slovenia and from Raibl, Italy.

Aurichalcite
\((\text{Zn,Cu})_5(\text{CO}_3)_2(\text{OH})_6\)

Properties: C - light green, blue-green, blue; S - blue-green; L - silky to pearly; D - translucent; DE - 4; H - 1-2; CL - perfect; M - acicular crystals, crusts.

Origin and occurrence: Secondary in the oxidation zone of Cu and Zn deposits in the arid climate, associated with linarite and other minerals. Large prismatic crystals come from Mina Ojuela, Mapimi, Durango, Mexico. Nice rosettes of acicular crystals are known from Bisbee and from the 79 mine, Banner district, Arizona, USA. It also occurred in Monteponi, Sardinia, Italy.

Aurichalcite, 80 mm, Arizona, U.S.A.
Dawsonite
NaAl(CO₃)(OH)₂

Orthorhombic

Properties:
C - colorless to white; S - white; L - vitreous; D - transparent; DE - 2.4; H - 3; CL - perfect; M - acicular to blade-like crystals, radial aggregates.

Origin and occurrence: Hydrothermal in low-temperature deposits, associated with calcite, dolomite and other minerals. Fine acicular crystals up to 35 mm (1 1/4 in) long come from Mont St.-Hilaire, Quebec, Canada. Radial aggregates along the rock cracks were found in Dubnik and Zlata Bana, Slovakia.

Bastnäsite-(Ce)
(Cs,La)(CO₃)F

Hexagonal

Properties:
C - yellow to brown; S - yellow-brown; L - vitreous to greasy; D - translucent; DE - 4.8-5.2.
Bastnasite-(Ce). 6 mm x. Ariège, France

H - 4.4-5; CL - good; F - uneven; M - tabular crystals, granular, massive.

Origin and occurrence: Magmatic in pegmatites, also metamorphic, together with allanite-(Ce) and other rare earth elements minerals. Crystals up to 200 x 150 mm (7¼ x 6 in) in size occur in Andekatany, Madagascar. Crystals up to 100 mm (4 in) long are known from Karonge, Burundi. Transparent crystals up to 25 mm (1 in) long were found recently in the Trimouns quarry, France. It forms important local deposits, as those of Mountain Pass, California, USA. Application: ore of rare earth elements.

Parisite-(Ce)
CaCe₂(CO₃)₃F₂

TRIGONAL

Properties: C - brown, yellow-brown, gray-yellow; S - brownish; L - vitreous to resinous; D - transparent to translucent; DE - 4.4; H - 4.5; CL - perfect; F - conchoidal to splintery; M - dipyrismatic striated crystals.

Origin and occurrence: Magmatic in pegmatites, also hydrothermal and rarely metamorphic, together with bastnasite-(Ce) and other minerals of rare earth elements. Crystals several cm long come from Quincy, Massachusetts, USA. Crystals up to 80 mm (3¼ in) long occurred in pegmatites near Hundholmen, Norway. Crystals up to 3 cm (1¼ in) long found in the Snowbird mine, Montana, USA. Transparent crystals up to 15 mm (1½ in) were recently reported in the Trimouns quarry, France. Very unusual association have been described from Muzo, Columbia, where crystals up to 30 mm occur together with emeralds.

Phosgenite
Pb₂(CO₃)Cl₂

TETRAGONAL

Properties: C - colorless, white, yellow-white, gray, brown; S - white; L - adamantine; D - transparent to translucent; DE - 6.1; H - 2-3; CL - good; F - conchoidal; M - short to long prismatic and tabular crystals, granular, massive; LU - sometimes yellow.

Origin and occurrence: Secondary, resulting from the oxidation of galena, associated with cerussite and other secondary Pb minerals. Crystals up to 150 x 100 mm (6 x 4 in) across known from Montcponi, Sardinia, Italy. Crystals from Tsumeb, Namibia reached up to 100 mm. Crystals up to 30 mm (1¼ in) in size found in Matlock, Derby, UK. Crystals up to 35 mm (1½ in) long occurred in the Mammoth mine, Tiger, Arizona, USA. Application: ore of rare earth elements.
Bismutite

\(\text{Bi}_2\text{O}_2(\text{CO}_3) \)

TETRAGONAL

Properties: C - yellow, brown, gray, blue, black; S - white; L - vitreous, pearly to dull; D - translucent to opaque; DE - 6.1-7.7; H - 3.5; CL - good; M - spherical, radial aggregates, massive, pulverulent.

Origin and occurrence: Secondary, originated from the oxidation of Bi minerals, associated with bismuthinitc and other minerals. It is common from pegmatities in Madagascar (Ampangabe) and in Mozambique. Large pebbles found in Kivu province, Zaire. It also occurred in Tasna, Bolivia.

Gaylussite

\(\text{Na}_2\text{Ca}(\text{CO}_3)_2 \cdot 5 \text{H}_2\text{O} \)

MONOCLINIC

Properties: C - colorless, white, gray, yellowish; S - colorless; L - vitreous; D - transparent to translucent; DE - 2; H - 2.5-3; CL - perfect; F - conchoidal; M - lenticular to prismatic crystals.

Origin and occurrence: Sedimentary, typical a constituent of salt sediments. Crystals up to 80 mm (3\(\frac{1}{2}\) in) long come from Searles Lake, California, USA. It also occurs in Borax Lake and Mono Lake, California, USA. Large crystals are known from Amboseli Lake, Kenya.

Weloganite

\(\text{Na}_2\text{Sr}_3\text{Zr}(\text{CO}_3)_6 \cdot 3 \text{H}_2\text{O} \)

TRICLINIC

Properties: C - white, yellow; S - white; L - vitreous; D - transparent to opaque; DE - 3.2; H - 3.5; CL - perfect; F - conchoidal; M - pseudo-hexagonal striated crystals.

Origin and occurrence: Hydrothermal in the alkaline rocks, together with zircon, dresserite and other minerals. Crystals up to 50 mm (2 in) come from cavities in the Francon quarry, Montreal; crystals up to 30 mm (1\(\frac{1}{4}\) in) are known from St. Michel, Quebec, Canada.
Artinite
\[\text{Mg}_2(\text{CO}_3)(\text{OH})_2 \cdot 3 \text{H}_2\text{O} \]
MONOCLINIC

Properties:
- C - white; S - white; L - silky; D - transparent; DE - 2; H - 2.5; CL - perfect; M - spherical, radial aggregates, veinlets, crusts.

Origin and occurrence: Hydrothermal, originating at low temperatures in serpentinites, associated with magnesite, aragonite and other minerals. Radial aggregates up to 20 mm (3/4 in) in size occur in the Gem mine, San Benito County, California, USA. Needles up to 20 mm (3/4 in) long come from Val Malenco, Italy. Clusters of acicular crystals were found on Staten Island, New York, USA.

Zaratite
\[\text{Ni}_3(\text{CO}_3)(\text{OH})_4 \cdot 4 \text{H}_2\text{O} \]
CUBIC

Properties:
- C - emerald-green; S - light green; L - vitreous to greasy; D - transparent to translucent; DE - 2.6-2.7; H - 3.5; CL - none; F - conchoidal; M - crystalline crusts, stalactites, coatings.

Origin and occurrence: Secondary, originating from the oxidation of Ni minerals, associated with millerite, brucite and other minerals. It occurs as a product of the oxidation of Ni minerals in ultrabasic rocks in Kraubat and Stubachtal, Austria. Large green coatings found in Hazlewood, Tasmania, Australia. It covers millerite needles in the vicinity of Kladno, Czech Republic.

Hydroxylite
\[\text{Mg}_6(\text{CO}_3)(\text{OH})_4 \cdot 4 \text{H}_2\text{O} \]
TRIGONAL

Properties:
- C - white; S - white; L - pearly to waxy; D - transparent; DE - 2.1; H - 2; CL - perfect; M - fibrous and layered aggregates, massive.

Origin and occurrence: Hydrothermal in ultrabasic and metamorphic rocks. It occurred with serpentine in Nordmark, Norway and also found at Franklin and Sterling Hill, New Jersey, USA.
Stichtite

\[\text{Mg}_6 \text{Cr}_2(\text{CO}_3)(\text{OH})_6 \cdot 4 \text{H}_2\text{O} \]

Trigonal • •

Properties:
- C - pink to purple; S - white; L - pearly, waxy to greasy; D - translucent; DE - 2.2; H - 1.5-2; CL - perfect; M - lamellar and fibrous aggregates, massive.

Origin and occurrence:
It occurs in serpentinites as scaly aggregates and veinlets in Bou Azzer, Morocco; in Dundas, Tasmania, Australia; and in Barberton, South Africa.

Alumohydrocalcite

\[\text{CaAl}_2(\text{CO}_3)_2(\text{OH})_4 \cdot 3 \text{H}_2\text{O} \]

Triclinic • •

Properties:
- C - white, gray; S - white; L - earthy; D - opaque; DE - 2.2; H - 2.5; CL - perfect; M - chalky aggregates, consisting of acicular crystals.

Origin and occurrence:
Secondary, associated with alopehane and other minerals. It was described from the Khakasy deposit, Siberia, Russia, where it originates from the oxidation of alopehane. Nice white radial aggregates occurred along the cracks in shales in Ladomirovo, Slovakia.

Ancylite-(Ce)

\[\text{Sr}_3(\text{Ce,La})_4(\text{CO}_3)_7(\text{OH})_4 \cdot 3 \text{H}_2\text{O} \]

Orthorhombic • •

Properties:
- C - colorless, yellow, yellow-brown, light purple, brown; S - white; L - vitreous to greasy; D - transparent to opaque; DE - 4; H - 4-4.5; CL - none; F - splintery; M - short to long prismatic and pseudo-octahedral crystals.

Origin and occurrence:
Hydrothermal in alkaline rocks, associated with nepheline and other minerals. Crystals up to 6 mm (1/4 in) long are known from...
6. Borates

Ludwigite
\[\text{Mg}_2\text{Fe}^{3+}\text{BO}_5 \]

Orthorhombic • • •

Properties:
C - dark green, black-green, black; S - blue-green; L B silky to dull; D - opaque; DE - 3.9; H - 5; CL - perfect; F B uneven; M - prismatic crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Metamorphic in skarns and dolomitic marbles, locally associated with magnetite and other borates. Rich aggregates are known from Ocna de Fier, Romania; Kamineichi, Japan and the Hoi Kol mine, Suan, North Korea.

Application: chemical industry, B ore.

Gaudefroyite
\[\text{Ca}_4\text{Mn}^{3+}_3(\text{BO}_3)_3\text{CO}_3(\text{OH})_3 \]

Hexagonal •

Properties:
C - black; S - black; L - adamantine to dull; D - opaque; DE - 3.4; H - 6; CL - good; F - uneven; M - prismatic crystals, fibrous and acicular aggregates.

Origin and occurrence: Hydrothermal in calcite veins. Prismatic crystals up to 50 mm (2 in) long were found on the mine dumps near Tachagalt, Morocco and in the N’Chwaning No. 2 mine and the Wessels mine, Kuruman, South Africa.

Inderite
\[\text{MgB}_3\text{O}_5(\text{OH})_5 \cdot 5\text{H}_2\text{O} \]

Monoclinic • • •

Properties:
C - colorless, white to pink in aggregates; S - white; L - vitreous; D - transparent to translucent; DE - 1.8; H - 2.5; CL - good; F - conchoidal to uneven; M - prismatic crystals, acicular and fibrous aggregates, nodules, massive.

Origin and occurrence: Sedimentary in boron deposits, commonly associated with colemanite and other borates. Prismatic crystals up to 100 mm (4 in) long occur in Boron, California, USA. It is also known from Inder, Kazakhstan.

Application: chemical industry, B ore.
Inyoite, 90 mm, Turkey

Borax, 60 mm x, Searles Lake, U.S.A.

Inyoite

\[\text{Ca}_3\text{B}_2\text{O}_5(\text{OH})_3 \cdot 4 \text{H}_2\text{O} \]

MONOCLINIC

Properties:
- C - colorless, white
- S - white
- L - vitreous
- D - transparent to translucent
- DF B 1.9: H 2
- CL - good
- F - uneven
- M - short prismatic to tabular crystals, columnar aggregates, massive

Origin and occurrence: Sedimentary in boron deposits, commonly associated with colemanite and other borates. Clear tabular crystals up to 100 mm (4 in) long found in Kirka and Emet, Turkey. It also comes from Indor, Kazakhstan and the Corkscrew mine, California, USA.

Application: chemical industry, B ore.

Ulexite, 20 mm aggregate, Death Valley, California, USA.
Borax
Na$_2$B$_4$O$_5$(OH)$_4$ · 8 H$_2$O

MONOCLINIC

Properties: C – white, colorless, yellowish, gray, greenish; S – white; L B vitreous to dull; D – transparent, translucent to opaque; DE – 1.7, H – 2-2.5; CL – perfect; F – conchoidal; M – short prismatic to tabular crystals, columnar to earthy aggregates, crusts, coatings, granular, massive; R – soluble in water.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates and halite. Prismatic crystals up to 150 mm long are known from Borax Lake, also Searles Lake and Boron, California, USA. It also occurs in Kirka, Turkey.

Application: chemical industry, B ore.

Ulexite
NaCaB$_5$O$_6$(OH)$_6$ · 5 H$_2$O

TRICLINIC

Properties: C – white, colorless, light gray; S – white; L B vitreous to silky; D – transparent to translucent; DE – 2.0; H – 2-2.5; CL – perfect; F B uneven; M – elongated prismatic to acicular crystals, fibrous aggregates, crusts, nodules, granular, massive.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates. Slabs up to 100 mm (4 in) thick consisting of fibrous aggregates occur in Boron, California; also found in Esmeralda, Nevada, USA; Emec, Turkey and Inder, Kazakhstan.

Application: chemical industry, B ore.

Colemanite
Ca$_2$B$_6$O$_{11}$ · 5 H$_2$O

MONOCLINIC

Properties: C – colorless, white, yellowish, light gray; S – white; L – vitreous; D – transparent to translucent; DE – 2.4; H – 4.5; CL – perfect; F B uneven; M – short prismatic and isometric crystals, granular, massive.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates. Perfect crystals up to 200 mm (7½ in), come from Emec and Kirka, Turkey. Crystals up to 70 mm (2¾ in) long occur in Gower Gulch, Inyo, California; also known from Esmeralda, Nevada, USA and Inder, Kazakhstan.

Application: chemical industry, B ore.
Kernite
Na₂B₄O₆(OH)₂ · 3 H₂O

MONOCLINIC • • •

Properties: C - colorless, white, light gray; S - white; L - vitreous to dull, silky; D - transparent, translucent to opaque; DE - 1.9; H - 2.5-3; CL - perfect; F - uneven; M - isometric crystals, fibrous aggregates, granular, massive; R - soluble in water.

Origin and occurrence: Sedimentary in boron deposits, associated with borax and other borates. Platy aggregates and crystals up to 2.5 x 1 m (8 ft x 39 ft) found in Boron, California, USA; also known from the Tincalayu mine, Salta province, Argentina.

Hambergite
Be₂BO₃(OH,F)

ORTHORHOMBIC • •

Properties: C - colorless, white, light gray; S - white; L - vitreous; D - transparent to translucent; DE - 2.4; H - 7.5; CL B perfect; F B uneven; M - tabular to prismatic crystals, granular.

Origin and occurrence: Magmatic in granitic and rarely also in alkaline pegmatites; hydrothermal in cavities within the pegmatites, associated with tourmaline, danburite and beryl. Tabular crystals up to 200 mm (7.7 in) from the Little Three mine, Ramona, California, USA. Crystals up to 110 mm (4.3 in) also known from several localities in Madagascar, e.g. Imalo and Anjanabonoina; also found in Hyakule, Nepal and Čidručice, Czech Republic.

Rhodizite
(K,Cs)Al₄Be₄(B,Be)₂O₂₈

CUBIC • • •

Properties: C - colorless, white, yellow, light gray; S - white; L - vitreous to adamantine; D - transparent to translucent; DE - 3.5; H - 8.5; CL - imperfect; F - conchoidal to uneven; M - isometric crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites, associated with tourmaline, danburite and beryl. Cubic to tetrahedral crystals, reaching up to 30 mm (1.17 in) occur in several localities in
Madagascar, e.g. Sahatany and Amiandromby; also known from the Animikie Red Ace pegmatite, Florence, Wisconsin, USA.

Boracite

$\text{H}_2\text{B}_6\text{O}_{13}\text{Cl}$

Orthorhombic

Properties:
- C - colorless, white, yellowish, light gray, light to dark green; S - white; L - vitreous; D - transparent to translucent; $\text{DE} = 3.0; H = 7-7.5; \text{CL}$
- F - conchoidal to uneven; M - isometric crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Sedimentary in evaporitic deposits, together with halite, gypsum and anhydrite; metamorphic in metamorphosed evaporates. Crystals up to 15 mm (5/8 in) come from Alto Chapare, Cochabamba, Bolivia; crystals about 5 mm (}$^{1/6}$ in$)$ in size, occur in Stassfurt, Hanover and Kahlberg, Germany. Crystals are also known from Choctaw, Louisiana, USA and the Boulby mine, North Yorkshire, England, UK.

Boracite. 12 mm x. Alto Chapare. Bolivia
7. Sulfates

Anglesite
PbSO_4

Orthorhombic

Properties:
- **C** - colorless, white, yellowish, gray, greenish;
- **S** - white;
- **L** - adamantine to greasy;
- **D** - transparent to translucent;
- **DE** - 6.4;
- **H** - 2.5 - 3;
- **CL** - dobra;
- **F** - conchoidal;
- **M** - thick tabular crystals, massive.

Origin and occurrence:
Secondary, as a result of the galena oxidation, together with cerussite and other minerals. Beautiful yellowish crystals up to 100 mm (4 in) in size come from Touissit, Morocco. Crystals from Tsumeb, Namibia, reached up to 40 mm (1\(\frac{1}{4}\) in). Large crystals are also reported from Phoenixville, Pennsylvania, USA. Crystals up to 20 mm (\(\frac{3}{4}\) in) occur in cavities in weathered galena in Sardinia, Italy. Crystals, reaching up to 40 mm (1\(\frac{1}{4}\) in) also found in Mezica, Slovenia. Prismatic crystals up to 75 mm (3 in) long known from the Bunker Hill mine, Idaho, USA.

Barite, 17 mm ss, Pöhl, Germany
Anhydrite, 35 mm, Simplon Tunnel, Switzerland

Anhydrite
CaSO_4

Orthorhombic

Properties:
- **C** - colorless, white, bluish, purplish, red, brown;
- **S** - white;
- **L** - pearly to vitreous;
- **D** - transparent to translucent;
- **DE** - 2.8 - 3;
- **H** - 3.5;
- **CL** - good;
- **F** - splintery to uneven;
- **M** - isometric and prismatic crystals, granular, massive.

Origin and occurrence:
Mostly sedimentary, as a result of the evaporation of sea water, associated with gypsum, calcite and other minerals; rare in pegmatites and hydrothermal. It is very common in form of massive aggregates in salt deposits in Stassfurt and Waltershausen, Germany, where small crystals also occur. Folded layers in clays known from Wieliczka, Poland. Purple crystals up to 20 mm (\(\frac{3}{4}\) in) found in cracks in metamorphic rocks near Simplon and St. Gotthard, Switzerland. Fine druses of bluish crystals up to 200 mm (7\(\frac{1}{4}\) in) long found in Naica, Chihuahua, Mexico.
Celestite
SrSO₄

ORTHORHOMBIC • • •

Properties: C - colorless, white, yellowish, blue; S - white; L - vitreous; D - transparent to translucent; DE - 4; H - 3-3.5; CL - perfect; F - uneven; M - prismatic and tabular crystals, columnar aggregates, concretions.

Origin and occurrence: Rare hydrothermal, mainly sedimentary, together with halite, anhydrite and gypsum. Beautiful blue crystals several cm long occur in cavities of concretions in the Sakoany mine, Madagascar. Prismatic crystals up to 100 mm (4 in) long in sulfur deposits in Poland (Tarnobrzeg) and Italy (Caltanissetta). Fine blue tabular crystals associated with aragonite crystals found in Pania Dolina, Slovakia. Fine crystals are known from marls in Tunisia and Libya.

Barite
BaSO₄

ORTHORHOMBIC • • •

Properties: C - white, yellow, blue, red, brown, black; S - white; L - vitreous; D - transparent to translucent; DE - 4.3-4.7; H - 3.5; CL - perfect; F - conchoidal to splintery; M - tabular to prismatic crystals, massive; LU - sometimes blue.

Origin and occurrence: Hydrothermal, it originates under medium and low temperatures, also sedimentary, together with fluorite, calcite, cinnabar and other minerals. Beautiful barite crystals up to 50 mm (2 in) found in hydrothermal veins in Pribram, Czech Republic. Blue tabular crystals up to 100 mm (4 in) from Dedova hora, Czech Republic. Beautiful tabular crystals up to 100 mm (4 in) known from Banska Stiavnica, Slovakia; Cavenic and Baia Sprie, Romania. Very fine crystals of up to 200 mm (7¾ in) occurred in Alston Moor, Frizington and Mowbray, Cumbria, UK. Beautiful druses of honey-brown crystals up to 70 mm (2¾ in) long found in Pohlu, Germany. Fine druses of prismatic crystals known from Elk Creek, South Dakota, USA; so called Antlerite, 60 mm. Chuquicamata, Chile.
Desert roses (crystals with inclusion of sand grains) originating in desert climate occur in the vicinity of Norman, Oklahoma, USA. Shiny crystals come from Freiberg and Halsbrücke, Germany. Application: an ingredient of drilling fluids, chemical, glass, paper and rubber industries.

Antlerite

Cu$_5$(SO$_4$)$_2$(OH)$_6$·3H$_2$O

Orthorhombic

Properties: C - green; S - light green; L - vitreous; D - translucent; DE - 3.9; H - 3.5; CL - perfect; F - conchoidal to uneven; M - short prismatic and acicular crystals, crusts and earthy aggregates.

Origin and occurrence: Secondary, resulting from weathering of Cu ores, associated with other secondary Cu minerals. It is a principal mineral of the oxidation zone in Chuquicamata, Chile, where it forms crystals up to 5 mm (1/8 in). Acicular crystals, up to 20 mm (3/4 in) long, occurred in Bisbee, Arizona, USA. Crystalline crusts are known from Spania Dolina and Piesky, Slovakia.

Brochantite

Cu$_4$(SO$_4$)(OH)$_6$

Monoclinic

Properties: C - green; S - light green; L - vitreous, in cleavage planes pearly; D - translucent to transparent; DE - 4; H - 3.5-4; CL - good; F - conchoidal to uneven; M - long prismatic to acicular crystals, granular.

Origin and occurrence: Secondary, as a result of the oxidation of Cu ores usually in the arid climate, together with other secondary Cu minerals. Crystals up to 70 mm (2 3/4 in) long found in Bisbee, together with pseudo-morphs of malachite after brochantite. Crystals are also known from Tsumeb, Namibia. Prismatic crystals up to 50 mm (2 in) long from Cerro Verde, Peru. Emerald-green crusts occur in Lubietova, Slovakia.
Linari

\[\text{PbCu(SO}_4\text{)}(\text{OH})_2 \]

MONOCLINIC

Properties: C - azure-blue; S - light blue; L - vitreous to adamantine; D - translucent; DE - 5.3-5.5; H - 2.5; CL - good; F - conchoidal; M - tabular and prismatic crystals, coatings.

Origin and occurrence: Secondary, as a result of the oxidation of Cu and Pb sulfides at low pH. The largest crystals, reaching up to 80 mm (3½ in), come from the Mammoth mine, Tiger, Arizona, USA. Crystals from the Grand Reef mine in Arizona up to 50 mm (2 in) long. Very fine crystals, up to 30 mm (1¾ in) were found in Keswick, Cumbria, England, UK. Large crystals were also described from Tsumeb, Namibia and from Broken Hill, New South Wales, Australia.

Alunite

\[\text{KA}_3(\text{SO}_4\text{)}_2(\text{OH})_6 \]

TRIGONAL

Properties: C - white, yellowish, gray; S - white; L - vitreous to pearly; D - transparent to opaque; DE - 2.8; H - 3.5-4; CL - perfect; F - conchoidal; M - rhombohedral crystals, porous aggregates, granular.

Origin and occurrence: Secondary, as a result of reactions of sulfuric acid with Al-rich rocks, associated with gypsum. Small crystals are known in Berohovo, Ukraine. Massive aggregates occur together with turquoise in Cu deposits in Arizona, USA. (New Cornelia mine and others). Huge alunite deposits, like Zaglik, Azerbaijan, are mined for Al.

Application: Al ore.
Natrojarosite

\[\text{NaFe}^{3+}_3(\text{SO}_4)_2(\text{OH})_6 \]

TRIGONAL

Properties: C - yellow, brown; S - light yellow; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3; CL - good; F - conchoidal; M - tabular to rhombohedral crystals, earthy aggregates.

Origin and occurrence: Secondary, as a result of weathering Fe sulfides, associated with fibroferrite, alunite and other minerals. It occurs in Modum, Norway; Soda Springs Valley, Nevada, USA; Chuquicamata, Chile and elsewhere.

Natrojarosite and other sulfates. The world’s best specimens come from Pena Blanca Uranium mine, near Aldama, Chihuahua, Mexico, where crystals, up to 20 mm (¾ in) were found. Crystals, up to 10 mm (⅝ in), were found in Tombstone, Arizona, USA. Crystals, together with pseudo-morphs of jarosite after alunite, occurred in Chuquicamata, Chile. Tabular crystals also were described from Horni Slavkov, Czech Republic.

Jarosite

\[\text{KFe}^{3+}_3(\text{SO}_4)_2(\text{OH})_6 \]

TRIGONAL

Properties: C - yellow; S - light yellow; L - adamantine to dulled; D - translucent to translucent; DE - 2.9-3.3; H - 2.5-3.5; CL - good; F - conchoidal to uneven; M - rhombohedral to tabular crystals, granular, massive.

Origin and occurrence: Secondary, as a result of weathering Fe sulfides, usually associated with jarosite, 2 mm xx, Gyongyosmoszi, Hungary

Beudantite

\[\text{PbFe}^{3+}_3(\text{AsO}_4)(\text{SO}_4)(\text{OH})_6 \]

TRIGONAL

Properties: C - dark green, brown, red-brown; S - greenish, gray-yellow; L - vitreous to resinous; D - transparent to translucent; DE - 4; H - 3.5-4.5; CL - good; M - rhombohedral crystals, crusts.

Origin and occurrence: Secondary, occurring in the oxidation zone of Pb deposits, together with scorodite and other minerals. Crystals, several mm in size, found in Tsumeb, Namibia, are the best in the world. Small crystals are known from Bisbee, Arizona, USA; Ashburton Downs, Western Australia, Australia and Kameza near Laurion, Greece.

Beudantite, 70 mm, Moidava, Czech Republic
Hanksite
\(\text{Na}_2\text{K}_2\text{SO}_4\text{(CO}_3\text{)}_2\text{Cl} \)

HEXAGONAL • •

Properties: C - colorless, yellowish; S - colorless; L - vitreous to dull; D - transparent to translucent; DE - 2.6; H - 3.5; CL - good; F - uneven; M - tabular to short prismatic crystals.

Origin and occurrence: Sedimentary in salt lake sediments, together with halite, borax and other minerals. Crystals up to 200 mm (7\(\frac{7}{8}\) in) found in Searles Lake, California, USA. It is also known from borax deposits in the Death Valley, California, USA.

Caledonite
\(\text{Cu}_2\text{Pb}_5\text{(SO}_4\text{)}_3\text{(CO}_3\text{)(OH)}_6 \)

ORTHORHOMBIC • •

Properties: C - green to blue-green; S - light green; L - resinous; D - transparent to translucent; DE - 5.6; H - 2.5-3; CL - perfect; F - uneven; M - prismatic crystals, radial aggregates.

Origin and occurrence: Secondary, occurring in the oxidation zone of Cu and Pb deposits, associated with linarite and other minerals. Crystals up to 20 mm (0.8 in) come from Leadhills, Scotland, UK. Crystals, up to 15 mm (0.6 in), were found in the Mammoth mine, Tiger, Arizona, USA. Rich druses are known from Anarak, Iran. Crystals reaching up to 20 mm (0.8 in) occurred in the Blue Bell mine, California, USA.

Leadhillite
\(\text{Pb}_4\text{(SO}_4\text{)}_3\text{(CO}_3\text{)(OH)}_2 \)

MONOCLINIC • • •

Properties: C - colorless, yellowish, gray; S - colorless; L - resinous to adamantine; D - transparent to translucent; DE - 6.5; H - 2.5-3; CL - perfect; F - conchoidal; M - pseudo-hexagonal tabular crystals.

Origin and occurrence: Secondary mineral from the oxidation zone of Pb deposits, associated with cerussite, anglesite, linarite and other minerals. The largest crystals, measuring up to 15 cm, come from Tsumeb, Namibia. Crystals up to 25 mm (1 in) found in the Mammoth mine, Tiger, Arizona, USA. Crystals in Leadhills, Scotland, UK were of similar size.

Chalcantite
\(\text{Cu}_2\text{SO}_4\cdot 5\text{H}_2\text{O} \)

TRICLINIC • • •

Properties: C - deep blue; S - white; L - vitreous to resinous; D - transparent to translucent; DE - 2.3; H - 2.5; CL - imperfect; F - conchoidal; M - short prismatic to tabular crystals, stalactites, films; R - soluble in water.

Hanksite, 50 mm, Searles Lake, U.S.A.

Caledonite, 5 mm x Graham Co., U.S.A.

Chalcantite, 5 mm x.
Origin and occurrence: Secondary, as a product of the oxidation of Cu sulfides, stable only in arid climate. Crystals up to 40 mm (1 3/4 in) in size, and Melanterite, 80 mm, Harz Mts., Germany.

Melanterite, up to 1 m (39 3/8 in) long are known from Bisbee, Arizona, USA. Crystals were also found in the oxidation zone in Chuquicamata, Chile. Beautiful stalactites come from Rio Tinto, Spain.

Application: rarely mined as Cu ore.

Melanterite
FeSO₄ · 7 H₂O

MONOCLINIC

Varieties: pisanite (with Cu contents), kirovitc (with Mg contents).

Properties: C - light green; S - colorless; L - vitreous; D - translucent; DE - 1.9; H - 2; CL - perfect; F - conchoidal; M - granular crusts, botryoidal and stalactitic aggregates, films; R - soluble in water.

Origin and occurrence: Secondary, as a result of the oxidation of Fe sulfides, together with other sulfates. It is unstable under atmospheric conditions. Crystals up to 20 mm (7/8 in) long are known from Bisbee, Arizona and from the Boyd mine, Tennessee, USA. Stalactites, up to 50 cm (20 in) long, occurred in Chvaletice, Czech Republic. It is also common in Rio Tinto, Spain and Banska Stiavnica, Slovakia.
Epsomite
$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$

Orthorhombic

Properties:
- C: colorless to white; S: colorless; L: vitreous to silky; D: transparent to translucent; DE: 1.7; H: 2; CL: perfect; F: conchoidal; M: small crystals, granular, stalactitic aggregates; R: soluble in water, decomposing under atmospheric conditions.

Origin and occurrence: Secondary, as a result of the oxidation of Fe sulfides, also from crystallization of the salt lake water, associated with halite and other minerals. Crystals up to 1 m (39'7» in) long were found on Mount Kruger, Washington; prismatic crystals up to 50 mm (2 in) long also occur in Bisbee, Arizona and needles of a similar size come from the White Caps mine, Nevada, USA. It is also known as a product of the activity of fumaroles in Mount Vesuvius, Italy.

Morenosite
$\text{NiSO}_4 \cdot 7\text{H}_2\text{O}$

Orthorhombic

Properties:
- C: green, green-white; S: greenish; L: vitreous; D: transparent to translucent; DE: 2; H: 2-2.5; CL: good; F: conchoidal to uneven; M: stalactitic crusts and efflorescences; R: soluble in water.

Origin and occurrence: Secondary, as a result of the oxidation of Ni minerals, stable mainly in the arid regions. It is very common in Sudbury, Ontario, Canada; also in Richelsdorf, Germany and Potucky, Czech Republic.

Coquimbite
$\text{FeSO}_4 \cdot 9\text{H}_2\text{O}$

Trigonal

Properties:
- C: purple, yellow, green, colorless; S: colorless; L: vitreous; D: transparent; DE: 2.1; H: 2; CL: perfect; F: conchoidal to uneven; M: prismatic to tabular crystals, granular, massive; R: soluble in water.

Origin and occurrence: Secondary, associated with other sulfates. Crystals, several cm long, were found in the Dexter No.7 mine, Calf Mesa, Utah, USA. Small prismatic crystals are known from Zeleznik, tabular crystals occurred in Banaka Stiavnica, Slovakia. It is very common in Chilean deposits, like Chuquicamata and Tierra Amarilla.

Alunogen
$\text{Al}_2(\text{SO}_4)_3 \cdot 17\text{H}_2\text{O}$

Triclinic

Properties:
- C: colorless, white, gray-yellow; S: colorless; L: silky; PS: transparent; DE: 1.8; H: 1.5; CL: perfect; M: pseudo-hexagonal crystals, granular; R: soluble in water.

Origin and occurrence: Secondary, as a result of the pyritic oxidation, also a product of sublimation on volcanoes and burning dumps, associated with other sulfates. Large crystals are known from the Dexter No.7 mine, Calf Mesa, Utah, crusts, over 1 m (39'7» in) thick were found on Mount Alum, New Mexico.
USA. Fine aggregates occur on the walls of underground workings in the old opal mines in Dubnik, Slovakia.

Halotrichite

FeAl$_2$(SO$_4$)$_4$ · 22 H$_2$O

MONOCLINIC

Properties: C - white, greenish; S - colorless; L - vitreous; PS - transparent to translucent; DE - 1.9-2.1; H - 1.5-2; CL - imperfect; F - conchoidal; M - acicular crystals, fibrous aggregates, efflorescences; R - soluble in water.

Origin and occurrence: Secondary, as a result of the pyrite oxidation, also a product of the activity of hot springs and solfataras, associated with other sulfates. Common fibrous crusts occur in Dubnik, Slovakia. It looks similar in Rio Marina, Elba, Italy and in Chuquicamata, Chile. It is known from solfataras in Pozzuoli, Italy. It is a product of hot springs activity in the Lassen Peak National Park, California, USA.

Apjohnite

MnAl$_2$(SO$_4$)$_4$ · 22 H$_2$O

MONOCLINIC

Properties: C - colorless, white, pink, greenish, yellow; S - colorless; L - silky; D - transparent; DE - 1.9; H - 1.5; M - fibrous aggregates, coatings, massive; R - soluble in water.

Origin and occurrence: Secondary, occurring together with other sulfates. Large accumulations are known from Little Pigeon Creek, Alum Cave, Tennessee, USA. It also occurs in Delagona Bay, Mozambique.
Bilinite

\[\text{Fe}^{2+}\text{Fe}^{3+}_2\text{(SO}_4)_4 \cdot 22\text{H}_2\text{O} \]

MONOCLINIC

Properties:
- C: white to yellowish
- S: white
- L: silky
- D: opaque
- DE: 1.9
- H: 2
- M: fibrous aggregates
- R: soluble in water

Origin and occurrence: Secondary, as a result of the pyrite oxidation, associated with other sulfates. Skeletal crystals up to 10 mm (¾ in) in size are known from the brown coal basin near Most and Bilina, Czech Republic. Original locality Ermniky, Czech Republic yielded fibrous crusts, up to 50 mm (2 in) thick. Fine octahedra, up to 10 mm (¼ in) come from burning dumps near Zastavka near Brno, Czech Republic. Octahedra occur also in Geysers, California, USA. Small crystals on Etna, Sicily, Italy are of volcanic origin.

Tschermigite

\[(\text{NH}_4)\text{Al(}\text{SO}_4)_2 \cdot 12\text{H}_2\text{O} \]

CUBIC

Properties:
- C: colorless
- S: colorless
- L: vitreous
- D: transparent
- DE: 1.5
- H: 2.5
- F: conchoidal
- M: octahedral crystals, fibrous and columnar aggregates
- R: soluble in water

Origin and occurrence: Secondary in the brown coal, also on burning dumps and as a product of solfataras. Skeletal crystals up to 10 mm (¾ in) in size are known from the brown coal basin near Most and Bilina, Czech Republic. Original locality Ermniky, Czech Republic yielded fibrous crusts, up to 50 mm (2 in) thick. Fine octahedra, up to 10 mm (¼ in) come from burning dumps near Zastavka near Brno, Czech Republic. Octahedra occur also in Geysers, California, USA. Small crystals on Etna, Sicily, Italy are of volcanic origin.

Polyhalite

\[\text{KCa}_2\text{Mg(}\text{SO}_4)_4 \cdot 2\text{H}_2\text{O} \]

TRICLINIC

Properties:
- C: colorless, brown, red-brown
- S: colorless
- L: vitreous
- D: transparent to translucent
- DE: 2.8
- H: 3-3.5
- M: acicular to prismatic crystals, columnar, scaly and fibrous aggregates

Origin and occurrence: Sedimentary, as a constituent of salt deposits, also as a product of volcanic activity. Tabular and prismatic crystals are found rarely together with massive polyhalite aggregates in Stassfurt, Germany. Fibrous aggregates come from Halstatt, Austria. Large deposits of polyhalite are located near Carlsbad, New Mexico, USA. Coatings occur on Mount Vesuvius, Italy.

Görgeyite

\[\text{K}_2\text{Ca}_5\text{(SO}_4)_6 \cdot \text{H}_2\text{O} \]

MONOCLINIC

Properties:
- C: colorless, yellowish
- S: colorless
- L: vitreous
- D: translucent
- DE: 3
- H: 3.5

Origin and occurrence: Secondary, as a constituent of salt deposits, also as a product of volcanic activity. Tabular and prismatic crystals are found rarely together with massive polyhalite aggregates in Stassfurt, Germany. Fibrous aggregates come from Halstatt, Austria. Large deposits of polyhalite are located near Carlsbad, New Mexico, USA. Coatings occur on Mount Vesuvius, Italy.
Gypsum

\[\text{CaSO}_4 \cdot 2 \text{H}_2\text{O} \]

MONOCLINIC

Varieties: Maria-glass, alabaster, satin spar, selenite.

Properties: C – colorless, white, gray, yellowish; S – colorless; L – vitreous to pearly; D – translucent; DE – 2.3; H – 1.5-2; CL – perfect; F – conchoidal; M – typical monoclinic crystals, often twins, fibrous and platy aggregates, granular, massive; LU – crystals with inclusions sometimes bluish to yellowish.

Origin and occurrence: Sedimentary in salt deposits, associated with halite and other minerals. Fine crystals up to 80 mm (3 1/4 in) long found near Inder Lake, Kazakhstan; also known from Bad Ischl, Austria.

Application: building, chemical and medical industries.

Langite

\[\text{Cu}_4(\text{SO}_4)(\text{OH})_6 \cdot 2 \text{H}_2\text{O} \]

ORTHORHOMBIC

Properties: C – blue, blue-green; S – light blue; L – vitreous to silky; D – translucent; DE – 3.3; H – 2.5-3; CL – perfect; F – conchoidal; M – small isometric crystals, fine-grained crusts, earthy aggregates.

Origin and occurrence: Secondary, as a product of the oxidation of Cu ores, associated with gypsum and other minerals. Crystals known from St. Just, Cornwall, UK. Crystals occurred in Tsumeb, Namibia. Fine specimens come from Spania Dolina and L'ubietova, Slovakia and from Borovec, Czech Republic. It is also common in Ely, Nevada, USA and in El Cobre, Chile.
Fibroferrite
Fe$^{3+}$(SO$_4$)(OH)\cdot5H$_2$O

Orthorhombic

Properties: C - yellowish, greenish, gray; S - white; L - silky; D - opaque; DE - 1.9; H - 2.5; CL - perfect; M - small crystals, fibrous and botryoidal crusts; R - soluble in water.

Origin and occurrence: Secondary as a product of the pyrite oxidation, together with other sulfates. Crystals in cavities in melanterite found in the Dexter No.7 mine, Calf Mesa, Utah, USA. Vein fillings up to 3 m (10 ft) thick come from the Santa Elena mine, La Alcaparrosa, Argentina. Fine fibrous aggregates occur in Dubnik, Slovakia. It is common in many localities in Chile (Tierra Amarilla, Chuquicamata).

Aluminite
Al$_2$(SO$_4$)(OH)$_4$$\cdot$7H$_2$O

Monoclinic

Properties: C - white; S - white; L - dull; D - opaque; DE - 1.7-1.8; H - 1-2; CL - none; M - earthy nodules, consisting of microscopic needles.

Origin and occurrence: Secondary, resulting from the reaction of sulfuric acid with Al in Al-rich rocks. Large nodule, 30 cm (12 in) in diameter, known from Newhaven, Sussex, UK. Fine white nodules described from Mala Chuchle, Prague, Czech Republic. It also occurs near Halle, Germany and covers limestone in the vicinity of Joplin, Missouri, USA.

Botryogen
MgFe$^{3+}$(SO$_4$)$_2$(OH)\cdot7H$_2$O

Monoclinic

Properties: C - orange-red; S - yellow; L - vitreous; D - transparent to translucent; DE - 2.1; H - 2-2.5; CL - perfect; F - conchoidal; M - prismatic striated crystals, racemose and spherical aggregates with radial structure.

Origin and occurrence: Secondary, as a result of the pyrite oxidation in arid regions, together with other sulfates. Crystals up to 35 mm ($1\frac{3}{8}$ in) long from the Libiola mine near Genoa, Italy. It is common in Chuquicamata and Quetena in Chile; also known from Rammelsberg, Germany.
Copiapite
$\text{Fe}^{2+},\text{Mg}\text{Fe}^{3+}_4\text{SO}_4\text{Fe}(\text{OH})_2 \cdot 20\text{H}_2\text{O}$

Monoclinic

Properties: C - yellow, green-yellow, orange; S - yellow; L - pearly; D - transparent to translucent; DE - 2.1-2.2; H - 2.5; CL - perfect; M - thin tabular crystals, scaly and pulverulent aggregates, earthy.

Origin and occurrence: Secondary, originated from the pyrite oxidation, together with other sulfates. Tabular crystals come from the Dexter No.7 mine, Calf Mesa, Utah, USA and also from Zeleznik, Slovakia. Fine crystals were found in many localities in Chile (Tierra Amarilla, Chuquicamata). It also occurs in Rammelsberg, Germany.

Devilline
$\text{CaCu}_4\text{SO}_4\text{Fe}(\text{OH})_6 \cdot 3\text{H}_2\text{O}$

Monoclinic

Properties: C - emerald-green; S - white to light green; L - vitreous to pearly; D - transparent to translucent; DE - 3.1; H - 2.5; CL - perfect; M - thin tabular pseudo-hexagonal crystals and coatings.

Origin and occurrence: Secondary, as a result of the oxidation of Cu sulfides, associated with other secondary Cu minerals. The world's best specimens come from Spania Dolina, Slovakia, where crystal rosettes up to 10 mm (¾ in) in diameter were found in the past century; also known from Botallack, Cornwall, UK and Tsumeb, Namibia.

Serpierite
$\text{Ca}(_{\text{Cu,Zn}})_4\text{SO}_4\text{Fe}(\text{OH})_6 \cdot 3\text{H}_2\text{O}$

Monoclinic

Properties: C - blue; S - white; L - vitreous; D - transparent to translucent; DE - 3.1; H - 2.5; CL - perfect; M - tabular crystals, coatings.

Origin and occurrence: Secondary, originated in the oxidation zone of Cu-Zn deposits, together with smithsonite and other minerals. Its small crystals and aggregates occurred in Laurion, Greece. Recently confirmed at Pribram, Czech Republic.
Ettringite

\[\text{Ca}_6\text{Al}_2(\text{SO}_4)_3(\text{OH})_{12} \cdot 26 \text{H}_2\text{O} \]

Hexagonal

Properties: C - colorless, yellow; S - white; L - vitreous to silky; D - transparent; DE - 1.8; H - 2.5; CL - perfect; M - prismatic crystals, fibrous aggregates.

Origin and occurrence: Metamorphic, associated with sturmanite. The world’s best crystals reaching up to 100 mm (4 in) come from the N’Chwaning mine, Kuruman, South Africa. Crystals up to 4 mm (⅜ in) occurred in Franklin, New Jersey, USA. Also known from the contact metamorphic conditions in Crestmore, California, USA.

Sturmanite

\[\text{Ca}_6\text{Fe}^{3+}_2(\text{SO}_4)_3(\text{OH})_{12} \cdot 25 \text{H}_2\text{O} \]

Trigonal

Properties: C - yellow, yellow-green; S - white; L - vitreous to silky; D - transparent to translucent; DE - 1.9; H - 2.5; CL - perfect; M - prismatic crystals, fibrous aggregates.

Origin and occurrence: Probably metamorphic, associated with barite, hematite and ettringite. Crystals up to 140 mm (5½ in) long come from the N’Chwaning mine, Kuruman, South Africa.

Johannite

\[\text{Cu}_2(\text{UO}_2)_2(\text{SO}_4)_3(\text{OH})_2 \cdot 8 \text{H}_2\text{O} \]

Triclinic

Properties: C - green; S - light green; L - vitreous; D - transparent to translucent; DE - 3.3; H - 2-2.5; CL - good; M - prismatic to thick tabular crystals, scaly aggregates, coatings; R - radioactive.

Origin and occurrence: Secondary, as a result of the uraninite oxidation, together with other secondary U minerals. Crystals are known from Jáchymov, Czech Republic and Johanngeorgenstadt, Germany. It was common with zippeite in Central City, Colorado, USA and also reported from Mounana, Gabon.

Zippeite

\[\text{K}_4(\text{UO}_2)_6(\text{SO}_4)_3(\text{OH})_{10} \cdot 4 \text{H}_2\text{O} \]

Orthorhombic

Properties: C - orange-yellow; S - yellow; L - dull to earthy; D - opaque; DE - 3.7; H - not determined; CL - perfect; M - acicular and tabular crystals, pulverulent and acicular aggregates, coatings; LU - green; R - radioactive.

Origin and occurrence: Secondary, forming during the uraninite oxidation, associated with other secondary U minerals. Small tabular crystals come from Dřimov, Czech Republic. Coatings and
Johannite, 70 mm, Jachymov, Czech Republic

Scheelite

CaWO₄

Properties: C - colorless, gray-white, yellow-brown, orange, red, greenish; S - white; L - greasy to adamantine; D - translucent; DE - 6.1; H - 4.5-5; CL - good; F - conchoidal to uneven; M - pseudo-octahedral crystals, granular, massive; LU - blue-white.

Origin and occurrence: Magmatic in pegmatites, hydrothermal in greisens and metamorphic; parageneses vary significantly according to the origin. Beautiful brownish crystals up to 100 mm (4 in) in size come from Taewha and Tongwha in Korea. Similar crystals were recently found in China. Orange crystals up to 40 mm (1¾ in) in size are associated with cassiterite crystals on quartz crystals from lutilin and Tenkergin, Russia. Clear crystals, weighing up to 50 kg (110 lb), occurred in pegmatites near Natas, Namibia. Crystals up to 70 mm (2¾ in) reported from several mines near Traversella, Italy. Beautiful red crystals up to 20 mm (¾ in) were very rare in Pohram, Czech Republic. Yellow crystals up to 40 mm (1¾ in) are known from quartz veins with pumpellyite in Obei Dsl, Czech Republic.

Application: W ore.
Stolzite

PbWO₄

TETRAGONAL

Properties:
- **C** - gray-brown, orange-yellow, red, green
- **S** - colorless
- **L** - adamantine to resinous
- **D** - transparent to translucent
- **DE** - 7.9-8.3
- **H** - 2.5-3
- **CL** - imperfect
- **F** - conchoidal to uneven
- **M** - dipyramidal and thick tabular, striated crystals

Origin and occurrence:
Secondary, as a result of the oxidation of primary W minerals. Crystals up to 60 mm (2 3/4 in) from St Leger-de-Peyres, France. Prisms and needles up to 25 mm (1 in) long found in Broken Hill, New South Wales, Australia. Crystals up to 25 mm (1 in) also known from Tsumeb, Namibia. Crystals up to 20 mm (% in) reported from Cerovac, Czech Republic and from the Black Pine mine, Montana, USA.

Ferromolybdite, 60 mm, Haryk, Czech Republic

Crocoite

PbCrO₄

MONOCLINIC

Properties:
- **C** - orange, red
- **S** - orange-yellow
- **L** - adamantine to greasy
- **D** - translucent
- **DE** - 6
- **H** - 3
- **CL** - good
- **F** - conchoidal to uneven
- **M** - long prismatic to acicular crystals, crusts

Origin and occurrence:
Secondary, as a result of the galena oxidation in basic rocks. The world’s best specimens come from the Dundas district, Tasmania, Australia where crystals up to 100 mm (4 in) long were found in several mines. Fine crystals up to 40 mm (% in) long are known from Berezovsk, Ural mountains, Russia. Crystals up to 20 mm (% in) were recently found in Callenberg, Germany.

Betpakdalite, 70 mm, Bayan Tsagdu, Mongolia
Ferrimolybdite
$\text{Fe}_2(\text{MoO}_4)_3 \cdot 8 \text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C - yellow, whitish; S - light yellow; L - adamantine, silky, earthy; D - opaque; DE - 4.4; H - 1-2; M - small acicular crystals, fibrous and radial aggregates, earthy.

Origin and occurrence: Secondary, as a product of the molybdenite oxidation. Microscopic crystals were found in Glen Innes, New South Wales, Australia. It occurred as yellow coatings in Climax and Telluride, Colorado, in the Getchell mine, Nevada, USA; also in Hrsky near Eista, Czech Republic.

Betpakdalite
$\text{CaFe}_3^+\text{H}_8(\text{MoO}_4)\text{S}_2\cdot 8 \text{H}_2\text{O}$

MONOCLINIC

Properties: C - lemon-yellow; S - yellow; L - vitreous, waxy, dull; D - opaque; DE - 3; H - 3; CL - good; M - short prismatic microscopic crystals, pulverulent.

Origin and occurrence: Secondary mineral. Originally described from Kara-Oba, Kazakhstan. It also occurred in Tsumeb, Namibia and in Krupka, Czech Republic.

Wulfenite
PbMoO_4

TETRAGONAL

Properties: C - yellow, orange, brownish, red, greenish; S - white; L - greasy to adamantine; D - transparent to translucent; DE - 6.3-7; H - 3; CL - good; F - uneven to conchoidal; M - thin tabular and dipyramidal crystals, granular, massive.

Origin and occurrence: Secondary, as a result of the galena oxidation, together with cerussite, vanadinite and other minerals. The best specimens are known from the Red Cloud mine near Yuma, Arizona, where red tabular crystals found up to 50 mm (2 in) diameter. Yellow-brown crystals up to 100 mm (4 in) come from the Glove mine, Arizona, USA. Thick tabular orange crystals up to 20 mm (¾ in) in diameter found in the Erupcion mine. Villa Ahumada, Los Lamentos, Chihuahua. Beautiful yellow plates up to 60 mm (2¾ in) with orange mimetite spheres occurred in the San Francisco mine, Magdalena, Sonora, Mexico. Rare tabular crystals up to 70 mm (2¾ in) across come from Tsumeb, Namibia. Fine orange-yellow tabular crystals up to 20 mm (¾ in) across, and pyramidal crystals are known from Bleiberg, Austria and Miziai, Slovenia. Crystals up to 100 mm (4 in) were found recently in Touissit, Morocco.

Wulfenite, 38 mm, Los Lamentos, Mexico
8. Phosphates

Lithiophosphate

Li$_3$PO$_4$

ORTHORHOMBIC

Properties: C - colorless, white, pinkish; S - white; L - vitreous; D - transparent to translucent; DE - 2.5; H - 4; CL - perfect; F - uneven; M - prismatic crystals, granular.

Origin and occurrence: Hydrothermal in granitic pegmatites, where it forms by replacement of spodumene and montebrasite. Cleavable aggregates up to 100 mm (4in) across occur in the Tanco Mine, Bernic Lake, Manitoba, Canada; crystals up to 25 mm (1 in) across in the Foote mine, Kings Mountain, North Carolina, USA.

Beryllonite

NaBePO$_4$

MONOCLINIC

Properties: C - colorless, white, yellowish; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 5.5-6; CL - perfect; F - uneven; M - short prismatic to tabular crystals, granular.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites where it is associated with herderite, albite and tourmaline. Crystals and their twins, up to 150 mm (6 in) across come from Stoneham and Newry, Maine, USA; also from Viitaniemi, Finland and Paprok, Afghanistan.

Triphylite

LiFePO$_4$

ORTHORHOMBIC

Properties: C - gray-green, gray-blue, gray, brown; S - gray-white; L - greasy to vitreous; D - transparent to translucent; DE - 3.4; H - 4-5; CL - good; F - uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites, associated with graffonite, sarcopside and many secondary phosphates. Large triphylite crystals up to 1.5 m (5 ft) across are known from Hagendorf, Germany; from the Tip Top mine, Custer, South Dakota and Palermo No. 1 mine, North Groton, New Hampshire, USA; also from Hühnerkobel, Germany.
Lithiofilit

LiMnP0₄

Orthorhombic

Properties: C - pink, red-brown, brown; S - white; L - vitreous; D - transparent to translucent; DE - 3.3; H - 4-5; CL - good; F - uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites. It is sometimes associated with triplite and triphyllite, typically replaced by many secondary phosphates. Large masses of lithiophillite, reaching up to 1 m (39½ in), occur in Karibib, Namibia; Kitumbe, Rwanda. Other localities are Mangualdo, Portugal; Tanco mine, Bernie Lake, Manitoba, Canada; Stewart Lithia Mine, Pala, California, USA.

Purpurite

Mn₃PO₄

Orthorhombic

Properties: C - pink, purple, dark brown; S - red-purple; L - dull to velvet; D - translucent to opaque; DE - 3.7; H - 4-4.5; CL - good; F - uneven; M - granular, massive.

Origin and occurrence: Hydrothermal, as a product of lithiophillite replacement in granitic pegmatites. It is usually associated with many secondary phosphates. It is known from Kitumbe, Rwanda; Usakos and Sandamab, Namibia; the Tip Top and Bull Moose mines, Custer, South Dakota and Branchville, Connecticut, USA.

Berzelite

(Ca,Na)₃(Mg,Mn)₂(AsO₄)₃

Cubic

Properties: C - yellow, orange; S - red-purple; L - resinous; D - transparent to translucent; DE - 4.1; H - 4-4.5; CL - none; F - conchoidal to uneven; M - isometric crystals, granular, massive.

Origin and occurrence: Metamorphic, together with hausmanite, rhodonite and tephroite. It occurs as massive in Langban and Nordmark, Sweden.

Whitlockite

Ca₉(Mg,Fe)H(P0₄)₇

Trigonal

Properties: C - colorless, white, yellowish, pinkish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.1; H - 5; CL - none; F - conchoidal to uneven; M - rhombohedral crystals, granular, massive.
Origin and occurrence: Hydrothermal, as a product of replacement of primary phosphates in granitic pegmatites, rare in sedimentary rocks – phosphorites; very rare magmatic in meteorites. Mainly associated with apatite and carbonates. Imperfect crystals around 10 mm (1/5 in) across, occur in the Palermo No. 1 mine, North Groton, New Hampshire; also in the Tip Top mine, Custer, South Dakota, USA.

Xenotime-(Y)
\[\text{YP}_4\text{O}_{12}\]
TETRAGONAL

Properties: C – brown, yellow, gray, greenish; S – white; L – vitreous to resinous; D – transparent, translucent to opaque; DE – 4.5; H – 4.5; CL – good; F – conchoidal to uneven; M – long prismatic to tabular crystals, granular; R – sometimes weakly radioactive and metamict.

Origin and occurrence: Magmatic in granitic and alkaline pegmatites, granites and syenites; hydrothermal in the Alpine-type veins; metamorphic in gneisses; common in placers. It is associated with monazite-(Ce) and zircon. Perfect prismatic crystals up to 100 mm (4in) across occur mainly in pegmatites in Kragero and Hitterø, Norway; Ytterby, Sweden; in several places in Madagascar; in Ichikawa, Japan. Crystals about 20 mm (3/4 in) are known from the Alpine-type veins in Binntal, Switzerland.

Application: ore of rare earth elements.

Xenotime-(Y), 14 mm x, Washington Co., U.S.A.
Whitlockite, 10 mm x, New Hampshire, U.S.A.
Monazite-(Ce)

CePO₄₄

MONOCLINIC • • •

Properties: C – yellow, brown, red-brown, orange, gray-green; S – white; L – vitreous to resinous; D – transparent, translucent to opaque; DE – 4.6; H – 5-5.5; CL – good; F – conchoidal to uneven; M – long prismatic to tabular crystals, granular; R – sometimes weakly radioactive and metamict.

Origin and occurrence: Magmatic in granitic and alkaline pegmatites, granites, syenites, carbonatites; hydrothermal in the Alpine-type veins and greisens; metamorphic in gneisses; common in placer.

It is associated with apatite, xenotime-(Y) and zircon. Perfect prismatic crystals up to 200 mm (7½ in) come from Mars Hill, North Carolina, Trout Creek Pass, Colorado, USA; also from Arendal, Norway; Ambatofootsikely and Ampangabe, Madagascar, where masses weighing several kg are common; crystals, up to 200 mm (7½ in) across found in Minas Gerais, Jaguaraçu, Brazil.

Application: ore of rare earth elements.

Hydroxylherderite

Ca₆Ce₆(PO₄)₂(OH,F)

MONOCLINIC • • •

Properties: C – colorless, white, yellowish, greenish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.0; H – 5-5.5; CL – good; F – conchoidal to uneven; M – prismatic to tabular crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites and in greisens. Perfect crystals, up to 120 mm (4¾ in) long come from Marilaca and together with colored tourmalines from Virgem da Lapa, Minas Gerais, Brazil; also known from Topsham and Stoncham, Maine, USA.

Amblygonite

LiAl(PO₄)(F,OH)

TRICLINIC • • •

Properties: C – colorless, white, yellowish, bluish, gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 5.5-6; CL – good; F – conchoidal to uneven; M – short prismatic crystals, granular, massive.

Monazite-(Ce), 31 mm, Felicio, Brazil

Hydroxylherderite, 22 mm, Anza, California, U.S.A.
Montebrasite, HO mm, White Picacho, Arizona, U.S.A.

Origin and occurrence: Magmatic in granitic pegmatites and some granites; rare hydrothermal in greisens and in ore veins. Large amblygonite masses, several meters across, come from pegmatites, like the Beccher, Custer and Hugo mines, Keystone, South Dakota, USA, where its blocks weighed up to 200 tons; also known from Viitaniemi, Finland; Uto, Sweden. Typical representative of the quartz-amblygonite veins is Vernerov, Czech Republic. Application: Li ore and raw material for ceramics.

Montebrasite
\[\text{LiAl}((\text{PO}_4)(\text{OH},\text{F})\right]

TRICLINIC

Properties: C - colorless, white, yellowish, yellow, bluish, gray; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.0; H = 5-6; CL - good; F - conchoidal to uneven; M - short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites and some granites; rare hydrothermal in granitic pegmatites. It occurs very frequently with amblygonite, which it replaces. Large masses are known from Montebras, France; also from the Tin Mountain mine, Custer, South Dakota, USA. Perfect tabular crystals up to 150 mm (6 in) across found in Taquaral, Minas Gerais, Brazil.

Wagnerite
\[\text{Mg}_2((\text{PO}_4)(\text{OH},\text{F})\right]

MONOCLINIC

Properties: C - light yellow, yellow-green, yellow-brown, green; S - white; L - vitreous to greasy; D - transparent, translucent to opaque; DE - 3.2; H = 5-5.5; CL - imperfect; F - conchoidal to uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; metamorphic in gneisses and eclogites; hydrothermal in quartz veins and in salt deposits. The most famous finds come from the quartz veins in Hollgraben and Radolgraben, the Alps, Austria, where wagnerite occur together with lazulite and forms crystals up to 30 mm (1½ in) across; also known from Mangualde, Portugal and Bodenmais, Germany.
Zwieselite

Fe$_2$(PO$_4$)(F,OH)

MONOCLINIC

Properties:
- C - dark brown to black-brown; S - light brown; L - vitreous to greasy; D - translucent to opaque; DE - 4.0; H - 5-5.5; CL - imperfect; F - conchoidal to uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; rare hydrothermal in greisens. It is associated with apatite, triplite and secondary phosphates. Imperfect crystals and granular aggregates are known from pegmatites near Zwiesel, Germany; Dolni Bory, Czech Republic.

Libethenite, 80 mm, L’ubietova, Slovakia

Triplite

Mn$_2$(PO$_4$)(F,OH)

MONOCLINIC

Properties:
- C - pink, light brown; S - light brown; L - vitreous to greasy; D - translucent to opaque; DE - 3.8; H - 5-5.5; CL - imperfect; F - conchoidal to uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites and granites; hydrothermal in greisens and in quartz veins. It is usually hydrothermally altered and replaced by secondary phosphates. Huge masses several meters in size come from pegmatites in Karibib, Namibia; it also occurs in Mangualde, Portugal and in Sukula, Finland.

Libethenite

Cu$_2$(PO$_4$)(OH)

ORTHORHOMBIC

Properties:
- C - black-green to light green; S - olive-green; L - greasy; D - translucent; DE - 3.9; H - 4; CL - imperfect; F - conchoidal to uneven; M - short prismatic and dipyramidal crystals, botryoidal aggregates, granular, massive.

Origin and occurrence: Secondary in Cu deposits, where it occurs together with malachite, pseudomalachite and brochantite. Perfect crystals, up to 30 mm (1½ in) across, come from the Rokana mine, Zambia; crystals, up to 10 mm (¼ in), are known from Kambove, Zaire; L’ubietova, Slovakia; Nizhniy Tagil, Ural Mts., Russia.
Olivenite

\[\text{Cu}_2(\text{AsO}_4)(\text{OH}) \]

Orthorhombic

Properties:
- **C** – olive-green, green-brown, gray-green to gray
- **S** – light green
- **L** – greasy
- **D** – translucent to opaque
- **DE** – 4.4
- **H** – 3
- **CL** – imperfect
- **F** – conchoidal to uneven
- **M** – long to short prismatic and dipyramidal crystals, acicular and radial aggregates, massive.

Origin and occurrence: Secondary in Cu deposits. It is associated with other secondary Cu minerals, malachite, azurite and scorodite. Perfect crystals up to 10 mm (1/4 in) across occurred in Wheal Gorland, Cornwall, and Tavistock, Devon UK; also in Tsumeb, Namibia and Ashburton Downs, Western Australia, Australia.

Adamine

\[\text{Zn}_2(\text{AsO}_4)(\text{OH}) \]

Orthorhombic

Properties:
- **C** – yellow-green, yellow, green, colorless, purple
- **S** – white
- **L** – vitreous
- **D** – transparent to translucent
- **DE** – 4.4
- **H** – 3.5
- **CL** – imperfect
- **F** – conchoidal to uneven
- **M** – long to short prismatic and dipyramidal crystals, acicular and radial aggregates, massive
- **LU** – yellow-green

Origin and occurrence: Secondary in Zn deposits, associated with hemimorphite, goethite and smithsonite. Rich druses of green and rare purple crystals up to 70 mm (2¾ in) across come from Mina Ojuela, Mapimi, Durango, Mexico; also known from Tsumeb, Namibia; Laurion, Greece and Cap Garonne, France.
Lazulite

MgAl₂(PO₄)₂(OH)₂

MONOCLINIC

Properties: C - dark to light blue, blue-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.1; H - 5.5-6; CL - imperfect; F - conchoidal to uneven; M - short prismatic and dipyramidal crystals, granular, massive.

Origin and occurrence: Hydrothermal in quartz veins and granitic pegmatites, where it is formed by decomposition of primary phosphates; metamorphic in quartzites. Imperfect crystals up to 100 mm (4 in) across come from Horrisjöberg, Sweden; perfect crystals about 50 mm found in Ashudi, Pakistan; also known from Scorzalite: 80 mm, Palermo No. 2 Mine, U.S.A.

Scorzalite

FeAl₂(PO₄)₂(OH)₂

MONOCLINIC

Properties: C - dark blue, blue-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.3; H - 6; CL - imperfect; F - conchoidal to uneven; M - prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in granite pegmatites, as a replacement product of primary phosphates, rare in quartz veins. Dark blue, granular aggregates up to 100 mm (4in) across occur in the Palermo No. 1 and No. 2 mines, North Groton, New Hampshire and the Victory mine, Custer, South Dakota, USA.

Rockbridgeite

Fe₂⁺Fe³⁺₄(PO₄)₃(OH)₅

ORTHORHOMBIC

Properties: C - dark and light green, black-green; S - green; L - dull; D - translucent to opaque; DE - 3.4; H - 4.5; CL - good; F - uneven; M - acicular crystals, radial aggregates and crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites and in Fe deposits. It mostly originates from the hydrothermal alteration of primary phosphates, mainly triphylite, and it is associated with other secondary phosphates. Rich radial aggregates up to 50 mm (2 in) across come from Hagenendorf, Germany; the Tip Top mine, Custer, South Dakota and the Fletcher mine, Groton, New Hampshire, USA.

Rockbridgeite, 70 mm, Hagenendorf, Germany
Frondelite

MnFe$_3^+$P$_4$O$_{13}$(OH)$_5$

Orthorhombic

Properties: C - light olive-green, brown, black-green; S - green; L - dull; D - translucent to opaque; DE - 3.5; H - 4.5; CL - good; F - uneven; M - acicular crystals, radial aggregates and crusts; granular, massive.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of the hydrothermal alteration of primary phosphates, mainly lithiophillite. Radial aggregates occur in the Fletcher mine, Groton, New Hampshire, USA; also in Sapucaia, Minas Gerais, Brazil.

Dufrenite

Fe$_{2+}$Fe$_3^+$P$_4$O$_{13}$(OH)$_5$·2H$_2$O

Monoclinic

Properties: C - dark green, black-green, black; S - green; L - vitreous to dull; D - translucent to opaque; DE - 3.4; H - 3.5-4.5; CL - good; F - uneven; M - radial aggregates and crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites and in the oxidation zone of Fe deposits; it forms in pegmatites as a result of the hydrothermal alteration of primary phosphates. Radial aggregates occur in pegmatites in Hagenoof and Hühnerkobel, Germany; also in gossan in the Wheal Phoenix mine, Cornwall, UK.

Pseudomalachite

Cu$_5$(PO$_4$)$_3$(OH)$_4$

Monoclinic

Properties: C - green, black-green; S - green; L - vitreous to dull; D - translucent to opaque; DE - 4.3; H - 4.5-5; CL - good; F - uneven; M - short prismatic crystals, botryoidal aggregates with radial structure, massive.

Origin and occurrence: Secondary in Cu deposits, associated with malachite, chrysocolla, libethenite and goethite. Beautiful botryoidal aggregates and large masses come from Nizhniy Tagil, Ural mountains, Russia; also from Ehl and Virneberg, Germany; from Lubietova, Slovakia; and also from many localities in Shaba province, Zaire.
Cornubite

\[\text{Cu}_2(\text{AsO}_4)\text{H}_2 \]

TRICLINIC

Properties:
- **C:** light to dark green; **S:** light green;
- **L:** vitreous to dull; **D:** translucent; **DE:** 4.8; **H:** not determined; **CL:** not determined; **F:** uneven; **M:** botryoidal aggregates, massive.

Origin and occurrence: Secondary in Cu deposits. It was found together with olivenite and clinoclase in the Bedford United quarry, Cornwall, UK; also in Ashburton Downs, Western Australia, Australia and Farbiste, Slovakia.

Cornetite

\[\text{Cu}_3(\text{PO}_4)\text{H}_3 \]

ORTHORHOMBIC

Properties:
- **C:** dark blue to blue-green; **S:** light blue;
- **L:** vitreous; **D:** transparent to translucent; **DE:** 4.1; **H:** 4.5; **CL:** none; **F:** conchoidal to uneven; **M:** short prismatic crystals, coatings.

Origin and occurrence: Secondary in Cu deposits. It is rare in the Etoile mine near Lumumbashi and in Kalagi, Shaba province, Zaire; also occurs in Yerington, Nevada and in Saginaw Hill, Arizona, USA.

Augelite

\[\text{Al}_2(\text{PO}_4)\text{H}_3 \]

MONOCLINIC

Properties:
- **C:** colorless, white, yellowish, pinkish;
- **S:** white; **L:** vitreous to dull; **D:** transparent to translucent; **DE:** 2.7; **H:** 4.5-5; **CL:** good; **F:** uneven; **M:** thick tabular to prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in granitic pegmatites as a product of primary phosphates replacement; rare metamorphic in quartzites. Massive aggregates several decimeters across occur in pegmatites in Burango, Rwanda; also in the Hugo mine, Custer, South Dakota and Mount White, California, USA. Crystals up to 20 mm (0.8 in) across come from Rapid Creek, Yukon, Canada and from the Champion mine, California; rare small crystals found in the Palermo No. 1 mine, North Groton, New Hampshire, USA.
Clinoclase

$\text{Cu}_3(\text{AsO}_4)(\text{OH})_3$

MONOCLINIC

Properties: C - dark green-blue to black-green; S - blue-green; L - vitreous; D - transparent to translucent; DE - 4.4; H - 2.5-3; CL - perfect; F - uneven; M - prismatic and tabular crystals, botryoidal aggregates.

Origin and occurrence: Secondary in Cu deposits, often associated with malachite, azurite and other secondary Cu minerals. Spherical aggregates up to 10 mm (½ in) known from the Majuba Hill mine, Nevada, USA; occurs rarely near Tavistock, Devon, UK; also in Novoveska Huta, Slovakia.

Conichalcite

$\text{Cu}_3\text{Ca}(\text{AsO}_4)(\text{OH})$

ORTHORHOMBIC

Properties: C - yellow-green, olive-green to gray-green; S - light green; L - vitreous to greasy; D - translucent; DE - 6.5; H - 3; CL - not determined; F - uneven; M - small crystals, botryoidal aggregates and coatings.

Origin and occurrence: Secondary in base metals deposits. It is associated with malachite and azurite in Tsumeb, Namibia; in Mina Ojuela, Mapimi, Durango, Mexico; in Moldava, Czech Republic.

Duftite

$\text{PbCu}_2(\text{AsO}_4)(\text{OH})_3$

ORTHORHOMBIC

Properties: C - yellow-green, olive-green to gray-green; S - light green; L - vitreous to greasy; D - translucent; DE - 4.3; H - 4.5; CL - none; F - uneven; M - short prismatic crystals, botryoidal aggregates with radial structure, massive.

Origin and occurrence: Secondary in Cu deposits. It occurs as rich botryoidal aggregates in Otavi, Namibia; Tintic, Utah, in the Higgins mine, Bisbee, Arizona and Yerington, Nevada, USA.
Descloizite

PbZn(VO₄)₃(OH)

Orthorhombic

Properties: C - red-orange, red-brown to brown-black; gray-green; S - light yellow-brown; L - greasy; D - transparent, translucent to opaque; DE - 6.1; H - 3.5; CL - none; F - conchoidal to uneven; M - crystals of different habits, mostly pyramidal or prismatic, botryoidal and skeletal aggregates, massive.

Origin and occurrence: Secondary in base metals deposits. It is mainly associated with pyromorphite, mimetite, vanadinite and other secondary Pb minerals. Occurs as crystals up to 30 mm (1 3/8 in) long in Tsumeb and Berg Aukas, Namibia; also Broken Hill, Zambia; and the Mammoth mine, Tiger, Arizona, USA.

Arsendescloizite

PbZn(AsO₄)₃(OH)

Orthorhombic

Properties: C - light yellow; S - white; L - adamantine to greasy; D - transparent to translucent; DE - 6.1; H - 4; CL - none; F - conchoidal to uneven; M - tabular crystals, rosette-like aggregates.
Mottramite

\[\text{PbCu(AsO}_4\text{)(OH)} \]

Orthorhombic

Properties:
- **C:** grass-green to black-green; **S:** light green; **L:** vitreous; **D:** transparent to opaque; **DE:** 5.9; **H:** 3.3-3.5; **CL:** none; **F:** conchoidal to uneven; **M:** crystals of different habits, botryoidal and dendritic aggregates, crusts and coatings, massive.

Origin and occurrence: Secondary in base metals deposits, associated with mimetite. It occurs in Mottram, Cheshire, UK; in Tsumeb, Namibia; Mammoth mine, Tiger, Arizona, USA.

Brazilianite

\[\text{NaAl}_3\text{(PO}_4\text{)}_2\text{(OH)}_4 \]

Monoclinic

Properties:
- **C:** colorless, white, yellowish, yellow-green; **S:** white; **L:** vitreous; **D:** transparent to translucent; **DE:** 3.0; **H:** 5.5; **CL:** good; **F:** uneven; **M:** short prismatic to isometric crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites, where it is associated with fluorapatite, albite and tourmaline. It occasionally originates as a product of amblygonite replacement. Perfect yellow-green crystals up to 150 mm (6 in) across found in cavities in pegmatites in Conselheiro Pena and Corrego Frio, Linopolis, Minas Gerais and from Pietras Lavradas, Paraiba, Brazil.

Mottramite, 60 mm. Tiger, Arizona, U.S.A.

Brazilianite, 47 mm. Conselheiro Pena, Brazil
Carminite

\[\text{PbFe}^{3+}{ }_2(\text{AsO}_4)_2(\text{OH})_2 \]

Orthorhombic

Properties: C – crimson-red, red-brown; S – red-yellow; L – adamantine to pearly; D – translucent; DE – 5.5; H – 3.5; CL – good; F – conchoidal to uneven; M – prismatic crystals, acicular, radial, felt-like to porous aggregates, coatings and crusts.

Origin and occurrence: Secondary in base metals deposits, associated with mimetite and scorodite. Crystals up to 10 mm (1/8 in) across occur in Tsumeb, Namibia; in Mina Ojuela, Mapimi, Durango, Mexico; in Calstock, Cornwall, UK.

Bayldonite

\[\text{PbCu}_3(\text{AsO}_4)_2(\text{OH})_2 \cdot \text{H}_2\text{O} \]

Monoclinic

Properties: C – yellow-green, olive-green; S – light green; L – resinous; D – translucent; DE – 5.5; H – 4.5; CL – not determined; F – uneven; M – earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone in hydrothermal Cu deposits and in greisens. It occurs as common yellow-green coatings and crystals up to 10 mm (1/8 in) across, associated with large azurite and mimetite crystals in Tsumeb, Namibia; also as coatings in St. Day, Cornwall, UK; in Moldava, Czech Republic.

Vesignieite

\[\text{BaCu}_3(\text{VO}_4)_2(\text{OH})_2 \]

Monoclinic

Properties: C – yellow-green, olive-green; S – light yellow-green; L – vitreous to dull; D – translucent;
Vesuvianite

DE = 4.1; H = 3-4; CL = good; F = uneven; M = earthy and pulverulent aggregates and coatings, massive.

Origin and occurrence: Secondary in base metals deposits and in sediments, containing Cu sulfides. It occurs as yellow-green coatings in sediments in Horni Kalna, Czech Republic; also in the Mushamba West mine, Zaire; together with barite and psilomelane in Friedrichroda, Germany.

Arsentsumebite

\[
\text{Pb}_2\text{Cu(AsO}_4\text{)(SO}_4\text{)(OH)}
\]

MONOCLINIC

Properties: C = bluish-green to light green; S = light green; L = dull; D = translucent; DE = 6.5; H = 3; CL = good; F = uneven; M = earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone, where it forms as a result of mimetite replacement. Found rarely in Moldava, Czech Republic; in Tsumeb, Namibia, where it forms pseudo-morphs after azurite crystals.
Fluorapatite
$\text{Ca}_5\left(\text{PO}_4\right)_3\text{F}$

HEXAGONAL

Properties: C - colorless, white, yellowish, pinkish, blue, purple, green, brown with various hues; S - white; L - vitreous to dull; D - transparent to translucent, sometimes opaque; DE - 3.2; H - 5; CL - imperfect; F - conchoidal to uneven; M - long prismatic to tabular crystals, botryoidal, earthy and fibrous aggregates, massive; LU - yellow.

Origin and occurrence: Magmatic in granites, syenites, diorites, gabbros and various types of pegmatites, also in volcanic rocks; hydrothermal in quartz veins, ore veins, greisens and Alpine-type veins; metamorphic in different types of gneisses, migmatites, mica schists, skarns and amphibolites; in different types of sedimentary rocks. Perfect, short prismatic, purple transparent crystals up to 40 x 40 mm (1 1/2 x 1 1/2 in) are renowned from pegmatite in the Pulsifer quarry, Mount Apatite, Auburn, Maine, USA; pink crystals from Dusso, Pakistan. Perfect crystals about 100 mm (4 in) across also from Alpine-type veins, e.g. in Fiesch, Switzerland; also known from the quartz veins in greisens, associated with wolframite, in Panasqueira, Portugal; in Horni Slavkov, Czech Republic; Ehrenfriedersdorf, Germany. Also found in skarns at Cerro de Mercado, Durango, Mexico. Large deposits of mas-
sive apatite located in Kola Peninsula, Russia; crystals weighing up to 300 kg (660 lb) from the vicinity of Clear Lake, Ontario, Canada.

Application: main source of P, chemical industry, fertilizer.

Chlorapatite

\[\text{Ca}_5(\text{PO}_4)_3\text{Cl} \]

Properties: C - white, various hues of yellow; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.2; H - 5; CL - imperfect; F - conchoidal to uneven; M - long prismatic to tabular crystals, granular.

Origin and occurrence: Magmatic in nepheline syenites and their pegmatites, some gabbros and volcanic rocks, also in meteorites; metamorphic in skarns. It is usually associated with scapolite, amphibole, titanite and magnetite. Perfect prismatic crystals up to 35 cm (13 3/4 in) long, come from pegmatites in Bamle, Norway; also from Kurokura, Japan.

Hydroxylapatite

\[\text{Ca}_5(\text{PO}_4)_3(\text{OH}) \]

Properties: C - white, yellow, various hues of gray; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.2; H - 5; CL - imperfect; F - conchoidal to uneven; M - short prismatic to tabular crystals, acicular aggregates, granular.

Origin and occurrence: Metamorphic in talc schists and serpentinites; hydrothermal in granitic pegmatites; sedimentary in organic remnants. Crystals up to 30 mm (1 1/8 in) across known from Snarum, Norway; Hospental, Switzerland; Eade, Colorado, USA.

Carbonate-fluorapatite

\[\text{Ca}_5(\text{PO}_4,\text{CO}_3)_3\text{F} \]

Properties: C - white, gray; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.2; H - 5; CL - imperfect; F - conchoidal to uneven; M - spherical and botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins and along the cracks in volcanic rocks. Rich botryoidal aggregates are known together with hyalite opal from Valec, Czech Republic; the Wheal Franco mine, Tavistock, Devon, UK.
Pyromorphite
$\text{Pb}_8(\text{PO}_4)_3\text{Cl}$

HEXAGONAL

Properties:
- **C** - green, brown, yellow, orange, white, gray
- **L** - white
- **D** - adamantine to greasy
- **T** - transparent to translucent
- **H** - 3.5-4
- **D** - imperfect
- **F** - conchoidal to uneven
- **M** - long prismatic to tabular and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, massive

Origin and occurrence:
Secondary in the oxidation zone of Pb deposit, associated with cerussite, goethite and other secondary minerals. Perfect crystals up to 40 mm (1.5 in) long come from many localities, e.g. green and brown ones from Bad Ems and Zschopau, Germany; yellow-brown ones from Les Farges, France; green, brown and yellow ones from Mina Ojuela, Mapimi, Durango, Mexico. Green, orange and brown crystals, up to 60 mm (2 in) long, are known from the Bunker Hill mine, Idaho, USA.
Mimetite

\[\text{Pb}_5(\text{AsO}_4)_3\text{Cl} \]

Hexagonal • • •

Varieties: campylyte

Properties:
- C: yellow, orange, brown, yellow-brown, white, gray; S: white; L: adamantine to greasy; D: transparent to translucent; DE: 7.3: 11; 3.5-4; CL: imperfect; F: conchoidal to uneven; M: long to short prismatic and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, granular.

Origin and occurrence: Secondary in Pb deposits, associated with pyromorphite, wulfenite, and goethite. Perfect crystals up to 130 mm (5 3/4 in) long come from Diebel Mahsour and Mibladen, Morocco. Prismatic crystals were also found in Tsumeb, Namibia; in the Old Yuma, Red Cloud Apache and Mammoth mines, Arizona, USA.

Vanadinite

\[\text{Pb}_5(\text{VO}_4)_3\text{Cl} \]

Hexagonal • • •

Properties:
- C: yellow, orange, red, brown, yellow-brown; S: white; L: adamantine to greasy; D: transparent to translucent; DE: 6.9; H: 2.5-3; CL: none; F: conchoidal to uneven; M: long to short prismatic and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, granular.

Origin and occurrence: Secondary in Pb deposits, associated with pyromorphite, wulfenite, and goethite. Perfect crystals up to 20 mm (7/8 in) long come from Johannegeorgenstadt, Germany; campylyte occurs in Drygill, UK; crystals up to 50 mm (2 in) across found in Tsumeb, Namibia; Santa Eulalia and San Pedro, Chihuahua, Mexico. Beautiful yellow crystals up to 30 mm (1 3/16 in) found recently in Hat Yai province, Thailand.
Atelestite, Bi$_2$(AsO$_4$)$_2$O(OH)

MONOCLINIC •

Properties: C - yellow, yellow-green; S - white; L - adamantine to greasy; D - transparent to translucent; DE - 7.0; H - 4.5-5; CL - imperfect; F - conchoidal to uneven; M - small tabular crystals, spherical aggregates.

Origin and occurrence: Secondary in the oxidation zone of Bi deposits. It was found in Schneeberg, Germany.

Hureaulite, Mn$_5$(PO$_4$)$_2$(PO$_3$(OH))$_2$.4H$_2$O

MONOCLINIC • • •

Properties: C - orange-red, pink, purplish, white, gray; S - white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3.5; CL - good; F - uneven; M - prismatic to tabular crystals, coatings, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites, as a result of alteration of the primary phosphates, mostly lithiophilllite, triphylite and graffonite. Purplish crystals up to 50 mm (2 in) across come from Shingus, Pakistan. Similar crystals found in Hagendorf, Germany. Also known from Mangualde, Portugal; Sao Jose da Safira, Minas Gerais, Brazil; from the Tip Top mine, Custer, South Dakota, USA.

Variscite, Al(PO$_4$)$_2$.2H$_2$O

ORTHORHOMBIC • • •

Properties: C - colorless, greenish, blue-green; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 3.5-4.5; CL - good; F - uneven; M - isometric crystals, botryoidal aggregates, nodules, coatings, massive.

Origin and occurrence: Secondary in granitic pegmatites, as a result of alteration of the primary phosphates, mostly lithiophilllite, triphylite and graffonite. Purplish crystals up to 50 mm (2 in) across come from Shingus, Pakistan. Similar crystals found in Hagendorf, Germany. Also known from Mangualde, Portugal; Sao Jose da Safira, Minas Gerais, Brazil; from the Tip Top mine, Custer, South Dakota, USA.

Strengite, Fe$^{3+}$(PO$_4$)$_2$.2H$_2$O

ORTHORHOMBIC • • •

Properties: C - colorless, pinkish, red-purple; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 3.5-4.5; CL - good; F - conchoidal; M - isometric, tabular to short prismatic crystals, botryoidal aggregates with radial structure, coatings.

Origin and occurrence: Secondary in granitic pegmatites, as a result of alteration of the primary phosphates, mostly lithiophilllite, triphylite and graffonite. Purplish crystals up to 50 mm (2 in) across come from Shingus, Pakistan. Similar crystals found in Hagendorf, Germany. Also known from Mangualde, Portugal; Sao Jose da Safira, Minas Gerais, Brazil; from the Tip Top mine, Custer, South Dakota, USA.
Strengite, 34 mm, Svappavaara, Sweden

Scorodite, 10 mm x, Zacatecas, Mexico

Pegmatites where it forms as a result of hydrothermal replacement of primary phosphates, in the oxidation zone of Fe deposit together with goethite. Purple crystals up to 5 mm (¼ in) across, come from the Bull Moose mine, Custer, South Dakota, USA; also known from Pleystein, Germany and from Teskow, Czech Republic.

Scorodite

\[
\text{Fe}^{3+} (\text{AsO}_4) \cdot 2 \text{H}_2\text{O}
\]

Orthorhombic

Properties: B - light green, gray-green, olive-green, colorless, blue, yellow-brown; S - light green; L - vitreous to resinous; D - translucent to translucent; DE - 3.3; H - 3.5-4; CL - imperfect; F - conchoidal; M - dipyramidal to short prismatic crystals, botryoidal and earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits, associated with arsenopyrite, lollingite and other arsenides; in granitic pegmatites; hydrothermal in the hot springs. Perfect crystals up to 50 mm (2 in) across come from Tsumeb, Namibia; the Kiura mine, Oita, Japan; Mina Ojuela, Mapimi, Durango, Mexico; green crusts, several cm thick, were found in Djebel Debar, Algeria.
Phosphophyllite
$\text{Zn}_2\text{Fe}(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$

Monoclinic •

Properties: C - colorless, blue-green, blue; S - white; L - vitreous; D - transparent to translucent; DE - 3.1; H - 3-3.5; CL - good; F - uneven; M - long to short prismatic and thick tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of ore deposits: in granitic pegmatites, where it replaces primary phosphates. Perfect crystals, up to 140 mm (5'/2 in) across come from sulfide cavities in the Unificada mine, Potosi, Bolivia. Also occurs at Hagendorf, Germany.

Ludlamite
$\text{Fe}_3(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$

Monoclinic •

Properties: C - light green, green; S - white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3-3.5; CL - perfect; F - uneven; M - thin to thick tabular crystals, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits: in granitic pegmatites, where it replaces primary phosphates. Perfect crystals up to 90 mm (3'/2 in) across known from the San Antonio mine, Santa Eulalia, Chihuahua, Mexico; also from Morococala, Bolivia and the Blackbird district, Idaho, USA.

Anapaite
$\text{Ca}_3\text{Fe}(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$

Triclinic •

Properties: C - light to dark green, colorless; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 3.5; CL - perfect; F - uneven; M - thin to thick tabular crystals, rosette-like aggregates, granular.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits and in sedimentary rocks, rich in P. Tabular crystals several mm across and spherical aggregates, up to 30 mm (1'/2 in) across, come from the cracks within oolitic ores near Anapa and Kerch, Crimea, Ukraine; also known from Bellaver de Cerdena, Spain.

Vivianite
$\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$

Monoclinic •

Properties: C - colorless when fresh, quickly oxidizes to blue, green, purple, black-blue; S - white to bluish; L - vitreous; D - transparent, translucent to opaque; DE - 2.7; H - 1.5-2; CL - perfect; F - uneven; M - long prismatic to acicular crystals, fibrous, earthy to pulverulent aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits; in granitic pegmatites, where it forms by the replacement of primary phosphates and in sedimentary rocks in proximity of organic...
Anapaite. 18 mm aggregates, Anapa, Ukraine

material: hydrothermal in the ore deposits. Crystals up to 1.5 m (5 ft) long found in clay sediments in Anloua, Cameroon; crystals up to 200 mm (7½ in) across known from Morococala, Bolivia. Smaller crystals come from Trepeca, Serbia; Leadville, Colorado, Bingham Canyon, Utah, USA; also from Kerch and Anapa, Crimea, Ukraine.

Erythrine

\[\text{Co}_3(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O} \]

MONOCLINIC • • •

Properties: C - dark purple, pink, colorless; S - light pink to white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 1.5-2.5; CL - perfect; F - uneven; M - long, prismatic, acicular to tabular crystals, earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Co, Ni and U deposits. Tabular crystals up to 60 mm (2½ in) long come from Bou Azzer, Morocco. Other important localities are Schwberg, Germany; Talmasi, Iran; Cobalt, Ontario, Canada; Mount Cobalt, Queensland, Australia.

Erythrine, 29 mm, Mexico

Vivianite. 48 mm. Morococala, Bolivia

Vivianite, 48 mm. Morococala, Bolivia

Erythrine, 29 mm. Mexico
Phosphophyllite
\[\text{Zn}_2\text{Fe(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

MONOCLINIC • • •

Properties: C – colorless, blue-green, blue; S – white; L – vitreous; D – transparent to translucent; DE – 3.1; H – 3-3.5; CL – good; F – uneven; M – long to short prismatic and thick tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals, up to 140 mm (5½ in) across come from sulfide cavities in the Unificada mine, Potosi, Bolivia. Also occurs at Iliamendorf, Germany.

Ludlamite
\[\text{Fe}_3\text{(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

MONOCLINIC • • •

Properties: C – light green, green; S – white; L – vitreous; D – transparent to translucent; DE – 3.2; H – 3.5; CL – perfect; F – uneven; M – thin to thick tabular crystals, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals up to 90 mm (3½ in) across known from the San Antonio mine, Santa Eulalia, Chihuahua, Mexico; also from Morococala, Bolivia and the Blackbird district, Idaho, USA.

Anapaite
\[\text{Ca}_2\text{Fe(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

TRICLINIC • • •

Properties: C – light to dark green, colorless; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 3.5; CL – perfect; F – uneven; M – thin to thick tabular crystals, rosette-like aggregates, granular.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits and in sedimentary rocks, rich in P. Tabular crystals several mm across and spherical aggregates, up to 30 mm (1½ in) across, come from the cracks within oolitic ores near Anapa and Kerch, Crimea, Ukraine; also known from Bellaver de Cerdona, Spain.

Vivianite
\[\text{Fe}_3\text{(PO}_4\text{)}_2 \cdot 8\text{H}_2\text{O} \]

MONOCLINIC • • • •

Properties: C – colorless when fresh, quickly oxidizes to blue, green, purple, black-blue; S – white to bluish; L – vitreous; D – transparent, translucent to opaque; DE – 2.7; H – 1.5-2; CL – perfect; F – uneven; M – long prismatic to acicular crystals, fibrous, earthy to pulverulent aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits; in granitic pegmatites, where it forms by the replacement of primary phosphates and in sedimentary rocks in proximity of organic
material; hydrothermal in the ore deposits. Crystals up to 1.5 m (5 ft) long found in clay sediments in Anloua, Cameroon; crystals up to 200 mm (7½ in) across known from Morococa. Bolivia. Smaller crystals come from Trepea, Serbia; Leadville, Colorado, Bingham Canyon, Utah, USA; also from Kerch and Anapa, Crimea, Ukraine.

Erythrine

\[
\text{Co}_2(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O}
\]

MONOCLINIC

Properties: C - dark purple, pink, colorless; S - light pink to white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 1.5-2.5; CL - perfect; F - uneven; M - long prismatic, acicular to tabular crystals, earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Co, Ni and U deposits. Tabular crystals up to 60 mm (2¼ in) long come from Bou Azzer, Morocco. Other important localities are Schneeberg, Germany; Talmessi, Iran; Cohalt, Ontario, Canada; Mount Cobalt, Queensland, Australia.

Vivianite

48 mm, Morococa, Bolivia
Annabergite

\[\text{Ni}_3(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O} \]

MONOCLINIC

Varieties: cabrercite (Mg contents)

Properties: C - light to dark green, white; S - white; L - vitreous; D - transparent to translucent; DE - 3.2, H - 1.5-2.5; CL - perfect; F - uneven; M - long prismatic to acicular and tabular crystals, acicular and earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Ni deposits, associated with erythrite. Crystals up to 5 mm (¼ in) across occur in Gukuroren, Turkey; Sierra Cabrera, Spain; Laurion, Greece. Nodules up to 20 mm (¾ in) come from the Snowbird mine, Montana, USA.

Symplesite

\[\text{Fe}_3(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O} \]

TRICLINIC

Properties: C - bluish, dark blue, light green, black-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.0, H - 2.5; CL - perfect; F - uneven; M - acicular to tabular crystals, spherical aggregates with radial structure, earthy aggregates and coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits and in granitic pegmatites with...
As minerals, mainly arsenopyrite and lollingite. It occurs in Schneeburg, Germany; Baia Sprie, Romania and Trebsko, Czech Republic.

Picropharmacolite

\[
\text{Ca}_4\text{MgH}_2(\text{AsO}_4)_4 \cdot 12\text{H}_2\text{O}
\]

Triclinic

Properties:
- Colorless, white; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 2.5; CL - perfect; F - uneven; M - acicular crystals, spherical aggregates with radial structure, coatings.

Origin and occurrence: Secondary in the oxidation zone of ore deposits with As minerals, mostly arsenopyrite and lollingite. It is also known from Ste-Marie-aux-Mines and Salsigne, France; Freiberg, Germany and Jachymov, Czech Republic.

Brushite

\[
\text{CaH}(\text{PO}_4)_2 \cdot 2\text{H}_2\text{O}
\]

Monoclinic

Properties:
- Colorless, white; S - white; L - vitreous, pearly on cleavage planes; D - transparent to translucent; DE - 2.3; H - 2.5; CL - perfect; F - uneven; M - prismatic, acicular to tabular crystals, earthy aggregates and coatings, massive.

Origin and occurrence: Secondary on bat and bird excrements and bones, it impregnates bones, along the cracks of phosphorites. Tabular crystals up to 20 mm (3/4 in) across come from Quercy, France also occurs near Oran, Algeria and Pig Hole, Virginia, USA.

Legrandite

\[
\text{Zn}_2(\text{AsO}_4)(\text{OH}) \cdot \text{H}_2\text{O}
\]

Monoclinic

Properties:
- Colorless, yellow, purple; S - white; L - vitreous; D - transparent to translucent; DE - 4.0; H - 4.5; CL - imperfect; F - uneven; M - long prismatic crystals and their inter-growths, radial aggregates.

Origin and occurrence: Secondary in the oxidation zone of Zn deposits and in pegmatites. Prismatic crystals up to 250 mm (9 3/4 in) long found in Mina Ojuela, Mapimi, Durango, Mexico. It is also known from Galicia, Minas Gerais, Brazil and Tsumeb, Namibia.
Euchroite

Cu₂(AsO₄)(OH)₂·3H₂O

ORTHORHOMBIC

Properties: C - emerald-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.5; H - 3.5-4; CL - imperfect; F - conchoideal to uneven; M - short prismatic to thick tabular crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, associated with olivenite and malachite. Thick tabular crystals up to 30 mm (1 1/4 in) come from L'ubietova, Slovakia. It also occurs in Zapacica, Bulgaria and Chessy, France.

Vauxite

FeAl₂(PO₄)₂(OH)₂·6H₂O

TRICLINIC

Properties: C - light to dark blue; S - white; L - vitreous; D - transparent to translucent; DE - 2.4; H - 3.5; CL - none; F - uneven; M - tabular crystals, radial aggregates, massive.

Strunzite

MnFe³⁺₂(PO₄)₂(OH)₂·6H₂O

MONOCLINIC

Properties: C - light yellow, yellow-brown; S - yellowish; L - vitreous; D - transparent to translucent; DE - 2.5; H - not determined; CL - not determined; F - uneven; M - acicular crystals, acicular and fibrous aggregates.

Origin and occurrence: Secondary in granitic pegmatites, as a result of weathering of primary phosphates, mostly triphyllitic; rarely hydrothermal in the cracks of Fe-rich sedimentary rocks. Acicular crystals up to 20 mm (3/4 in) across known from Hagendorf, Germany; the Palermo No.1 and No. 2 mines, North Groton and the Fletcher mine, Groton, New Hampshire, USA.
Cacoxenite, \(\text{Fe}^{3+},\text{Al}\)\(2\text{Si}(\text{PO}_4)\text{Al}_2\text{O}_6(OH)_{12}.75\text{H}_2\text{O} \)

Hexagonal

Properties: C - light yellow, yellow-brown, orange; S - yellow; L - silky; D - transparent to translucent; DE - 2.3; H - 3-4; CL - not determined; F - uneven; M - acicular and fibrous aggregates, often with radial structure, botryoidal crusts and coatings.

Origin and occurrence: Hydrothermal on the cracks of sedimentary Fe ores, associated with wavellite; rare as secondary in granitic pegmatites, as a product of weathering of primary phosphates. Crystals up to 10 mm (1/4 in) across come from the Horcajo mine, Ciudad Real, Spain; golden-yellow acicular aggregates occur in Hrbek near Svata Dobrotiva and Trenice, Czech Republic and in Amberg, Germany.

Beraunite, \(\text{Fe}^{2+}\text{Fe}^{3+}_1\text{Si}(\text{PO}_4)\text{Al}_4(OH)_{3}.4\text{H}_2\text{O} \)

Monoclinic

Properties: C - red-brown, red, gray-green; S - yellow to green-brown; L - vitreous to dull; D - translucent; DE - 3.0; H - 3.5-4; CL - good; F - uneven; M - acicular aggregates, often with radial structure, botryoidal crusts and coatings.

Origin and occurrence: Hydrothermal on the cracks of sedimentary Fe ores, typically together with wavellite; secondary in granitic pegmatites, as a product of weathering of primary phosphates. Acicular aggregates up to 10 mm (1/4 in) across occur in Mount Indian, Alabama, USA; also known from Hrbek near Svata Dobrotiva, Czech Republic and Amberg, Germany.

Diadochite, \(\text{Fe}^{3+}_2\text{Si}(\text{PO}_4)(\text{SO}_4)(OH)\text{.5H}_2\text{O} \)

Triclinic

Properties: C - yellow-brown, brown, red-brown, yellow-green, gray-green; S - yellow to light brown; L - dull, waxy; D - translucent to opaque; DE - 2.0-2.4; H - 3; CL - not determined; F - uneven, conchoidal, carby; M - nodules, coatings and crusts, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits. Diadochite caves in abandoned mines are known from Saalfeld, Germany; nodules found in New Idria, California and Eureka, Nevada, USA.

Diadochite, 40 mm, Recsk, Hungary
Wavellite

\[\text{Al}_3(\text{PO}_4)_{2}(\text{OH},\text{F})_3 \cdot 5 \text{H}_2\text{O} \]

Orthorhombic

Properties:
- **C:** colorless, white, greenish, light blue-green, green, yellowish; **S:** white; **L:** vitreous to pearly; **D:** transparent to translucent; **DE:** 2.4; **H:** 3.5-4; **CL:** perfect; **F:** uneven; **M:** isometric crystals, hemispherical aggregates with radial structure, botryoidal aggregates, nodules, coatings, massive.

Origin and occurrence: Hydrothermal in the cracks of Al and P-rich sediments, also in phosphate deposits, ore veins and pegmatites. Beautiful hemispherical aggregates up to 40 mm (1.6 in) in diameter occur in Pencil, Garland and Magnet Cove, Arkansas, USA; also known from Trenice and Milina, Czech Republic and Ronneburg, Germany.

Eosphorite

\[\text{MnAl}(\text{PO}_4)(\text{OH})_2 \cdot \text{H}_2\text{O} \]

Orthorhombic

Properties:
- **C:** pinkish, colorless, white, brownish, red-brown; **S:** white; **L:** vitreous to pearly; **D:** transparent to translucent; **DE:** 3.1; **H:** 5; **CL:** imperfect; **F:** uneven to conchoidal; **M:** long to short prismatic crystals, radial aggregates, granular.

Origin and occurrence: Secondary in granitic pegmatites, as a product of hydrothermal replacement of primary phosphates. Crystals up to 100 mm (4in) long found in the Joao Modesto dos Santos mine, Minas Gerais, Brazil. It occurs in Rapid Creek, Yukon, Canada, too.

Turquoise

\[\text{CuAl}_6(\text{PO}_4)_4(\text{OH})_8 \cdot 4\text{H}_2\text{O} \]

Triclinic

Properties:
- **C:** blue, blue-green, green; **S:** white; **L:** waxy; **D:** transparent, translucent to opaque; **DE:** 2.9; **H:** 5-6; **CL:** good; **F:** conchoidal to uneven; **M:** short prismatic crystals, botryoidal aggregates, coatings, massive.

Origin and occurrence: Secondary in the surface parts of rocks with elevated contents of P and Cu, e.g., in the oxidation zone of some Cu deposits. Small crystals occurred near Lynch Station, Virginia, USA. Massive blue and blue-green concretions come from Mount Ali Mirsai near Maden, Iran. Other localities are Cortez, Nevada, Los Cerrillos and Eureka, New Mexico and Bisbee, Arizona, USA.

Application: popular gemstone.
Chalcosiderite
$\text{CuFe}^{3+}_6(\text{PO}_4)_2(\text{OH})_8 \cdot 4\text{H}_2\text{O}$

TRICLINIC

Properties:
- C = dark green; S = white; L = vitreous;
- D = transparent to translucent; DE = 3.3; H = 4.5; CL = good; F = conchoidal to uneven; M = short prismatic crystals, coatings.

Origin and occurrence: Secondary in the oxidation zone of some Cu deposits, together with goethite, daubreelite and pharmacosiderite. It occurs in Bisbee, Arizona, USA; in the Wheal Phoenix mine, Cornwall, UK; Schneckenstein, Germany; Horni Slavkov, Czech Republic.

Turquoise, 3 mm aggregates, Humboldt Co., U.S.A.

Turquoise, 56 mm, Kazakhstan

Chalcosiderite, 50 mm, Cornwall, UK
Chenevixite

\[
\text{Cu}_2\text{Fe}^{3+}\text{Fe}^{2+}(\text{AsO}_4)_2(\text{OH})_4 \cdot \text{H}_2\text{O}
\]

MONOCLINIC

Properties:
- **C**: dark green, olive-green to yellow-green;
- **S**: yellow-green;
- **L**: greasy;
- **D**: translucent;
- **DE**: 3.9;
- **H**: 3.5-4.5;
- **CL**: not determined;
- **F**: conchoidal to uneven;
- **M**: earthy aggregates, coatings, massive.

Origin and occurrence:
Secondary in the oxidation zone of Cu deposits, associated with malachite, tyrolite, azurite and other minerals. Massive aggregates occur in the Mammoth mine, Tintic, Utah, USA; also in Klein Spitzkopje, Namibia.

Tyrolite

\[
\text{CaCu}_5(\text{AsO}_4)_2(\text{CO}_3)(\text{OH})_4 \cdot 6 \text{H}_2\text{O}
\]

ORTHORHOMBIC

Properties:
- **C**: apple-green, green-blue to blue;
- **S**: light green to blue-green;
- **L**: vitreous to pearly;
- **D**: transparent to translucent;
- **DE**: 3.3;
- **H**: 2;
- **CL**: perfect;
- **F**: uneven;
- **M**: scaly and fan-shaped aggregates, coatings and crusts.

Origin and occurrence:
Secondary in the oxidation zone of Cu deposits, frequently associated with chalcopyrite. Rich aggregates occur in the Majuba Hill mine, Nevada, also in Tintic, Utah, USA. It is also known from Brixlegg, Austria; Saalfeld and Schneeberg, Germany; Novoveska Huta, Slovakia.

Delvauxite

\[
\text{CaFe}^{3+}\text{Fe}^{4+}(\text{PO}_4,\text{SO}_4)(\text{OH})_8 \cdot 4-6 \text{H}_2\text{O}
\]

AMORPHOUS

Properties:
- **C**: yellow-brown, brown, red-brown, black-brown;
- **S**: yellow;
- **L**: greasy, waxy;
- **D**: translucent to opaque;
- **DE**: 1.8-2.0;
- **H**: 2.5;
- **CL**: not determined;
- **F**: conchoidal, earthy;
- **M**: nodules, stalactites, coatings and crusts, massive.

Origin and occurrence:
Secondary in oxidation zone of Fe deposits. Nodules of 50 cm (20 in) across in Czech Republic. Also known in Berneau and Richelle, Belgium; Zelznic, Slovakia; Kerch, Crimea, Ukraine.

Delvauxite, 80 mm. Nucice, Czech Republic
Bukovskyite, 40 mm. Káň, Czech Republic

Bukovskyite

\[\text{Fe}^{3+}_2(\text{AsO}_4)(\text{SO}_4)(\text{OH}) \cdot 7\,\text{H}_2\text{O} \]

TRICLINIC

Properties: C - yellow-green, gray-green; S - yellowish white; L - dull to earthy; D - translucent to opaque; DE - 2.3; H - not determined; CL - not determined; F - earthy; M B botryoidal aggregates and nodules.

Origin and occurrence: Secondary on the old mine dumps where it forms as a product of arsenopyrite weathering. Nodules up to 60 cm (24 in), occur on medieval dumps in Káň near Kutna Hora, Czech Republic.

Chalcophytlle, 36 mm, Chile

Veszelyite

\[(\text{Cu,Zn})_3(\text{PO}_4)(\text{OH}) \cdot 2\,\text{H}_2\text{O} \]

MONOCLINIC

Properties: C - green, blue-green, dark blue; S - green; L - vitreous; D - translucent; DE - 3.4; H - 3.5-4; CL - good; F - uneven; M - short prismatic to tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of Cu-Zn deposits. Crystals up to 50 mm (2 in) across found in the Black Pine mine, Philipsburg, Montana, USA; also from Moravita, Romania; Arakawa, Japan; Wanlockhead, Scotland, UK.

Chalcophytite, 13 mm. Philipsburg, USA

Chalcophytite

\[\text{Cu}_{18}\text{Al}_2(\text{AsO}_4)_3(\text{SO}_4)_3(\text{OH})_7 \cdot 36\,\text{H}_2\text{O} \]

TRIGONAL

Properties: C - emerald-green, blue-green; S - light green; L - vitreous, pearly; D - transparent to translucent; DE - 2.6; H - 2; CL - perfect; F - uneven; M tabular crystals, scaly, fan-shaped aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, usually associated with tyrolite. Rich aggregates occur in the Majuba Hill, Nevada and in the Tintic district, Utah, USA. Nice specimens also come from Novoveska Huta and Piesky, Slovakia; Nizhniy Tagil, Ural mountains, Russia; Cap Gannone, France.

Veszelyite, 13 mm, Philipsburg, U.S.A.
Lirokonit
Cu₂Al₃(AsO₄)(OH)₄ • 4 H₂O
MONOCLINIC • •

Properties: C - blue, green; S - light blue; L - vitreous to resinous; D - transparent to translucent; DE - 3.6; H - 2-2.5; CL - imperfect; F - conchoidal to uneven; M - lenticular, dipyramidal crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, together with olivenite, malachite and azurite. Perfect crystals up to 30 mm (1.1 in) across come from Redruth and St. Day, Cornwall, UK. It is also known from Cerro Gordo, California, USA.

Evansite
Al₃(PO₄)(OH)₄ • 6 H₂O
AMORPHOUS 3

Properties: C - colorless, white, greenish, light blue-green, yellowish; S - white; L - vitreous, resinous, waxy; D - transparent to translucent; DE - 1.6-2.2; H - 3-4; CL - none; F - conchoidal, M - botryoidal, stalactitic and hemispherical aggregates and coatings.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits, rich in P, associated with alunite and goethite. Rich stalactitic aggregates come from Zeleznik, Slovakia and from Epernay, France.

Whiteite-(CaFeMg)
CaFeMg₂Al₂(PO₄)₄(OH)₂ • 8 H₂O
MONOCLINIC • •

Properties: C - brown; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 4; CL - good; F - uneven; M - short prismatic crystals.

Origin and occurrence: Hydrothermal in the cracks of P-rich sediments. Perfect crystals up to 20 mm (0.8 in) across come from Big Fish River, Yukon, Canada. Crystals up to 5 mm (0.2 in) are known from Lavra da Ilha de Taquaral, Minas Gerais, Brazil.
Jahnsite-(CaMnMg)

\[\text{CaMnMg}_2\text{Fe}^{3+}_2(\text{PO}_4)_4(\text{OH})_4 \cdot 8\text{H}_2\text{O} \]

MONOCLINIC

Properties:
- **C:** yellow, light to dark brown; **S:** light yellow; **L:** vitreous; **D:** transparent to translucent; **DE:** 2.6; **H:** not determined; **CL:** good; **F:** uneven; **M:** short to long prismatic crystals, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Perfect crystals up to 10 mm (1/4 in) across occur in the Tip Top mine, Custer, South Dakota, USA. It is also known from Hagendorf, Germany.

Wardite

\[\text{NaAl}_3(\text{PO}_4)_2(\text{OH})_4 \cdot 2\text{H}_2\text{O} \]

TETRAGONAL

Properties:
- **C:** colorless, white, greenish, light blue-green; **S:** white; **L:** vitreous; **D:** transparent to translucent; **DE:** 2.8; **H:** 5; **CL:** perfect; **F:** uneven; **M:** dipyramidal crystals, radial and hemispherical aggregates, coatings, crusts, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Small crystals occur in Cyrilov, Czech Republic; Hagendorf, Germany and Sapucaia, Minas Gerais, Brazil.

Cyrilovite

\[\text{NaFe}^{3+}_3(\text{PO}_4)_2(\text{OH})_4 \cdot 2\text{H}_2\text{O} \]

MONOCLINIC

Properties:
- **C:** yellow, orange, brown-yellow; **S:** yellow; **L:** vitreous; **D:** transparent to translucent; **DE:** 3.1; **H:** 4; **CL:** good; **F:** conchoidal; **M:** tabular and dipyramidal crystals, coatings and crusts.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Small crystals occur in Cyrilov, Czech Republic; Hagendorf, Germany and Sapucaia, Minas Gerais, Brazil.
Lirokonit
$\text{Cu}_2\text{Al(AsO}_4\text{)(OH)}_2\cdot 4\text{H}_2\text{O}$

MONOCLINIC • •

Properties: C - blue, green; S - light blue; L - vitreous to resinous; D - transparent to translucent; DE - 3.0, H - 2.5; CL - imperfect; F - conchoidal to uneven; M - lenticular, dipyramidal crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, together with olivenite, malachite and azurite. Perfect crystals up to 30 mm (1½ in) across come from Redruth and St. Day, Cornwall, UK. It is also known from Cerro Gordo, California, USA.

Evansite
$\text{AI}_3(\text{PO}_4\text{(OH)}_6\cdot 6\text{H}_2\text{O}$

AMORPHOUS

Properties: C - colorless, white, greenish, light blue-green, yellowish; S - white; L - vitreous, resinous, waxy; D - transparent to translucent; DE - 1.9-2.2; H - 3-4; CL - none; F - conchoidal; M - botryoidal, stalactitic and hemispherical aggregates and coatings.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits, rich in P, associated with alunite and goethite. Rich stalactitic aggregates come from Zelezík, Slovakia and from Epernay, France.

Whiteite-(CaFeMg)
$\text{CaFe}_{2}\text{Al}_2(\text{PO}_4)_4(\text{OH})_2\cdot 8\text{H}_2\text{O}$

MONOCLINIC • •

Properties: C - brown; S - white; L - vitreous; D transparent to translucent; DE - 2.6; H - 4; CL - good; F - uneven; M - short prismatic crystals.

Origin and occurrence: Hydrothermal in the cracks of P-rich sediments. Perfect crystals up to 20 mm (¾ in) across come from Big Fish River, Yukon, Canada. Crystals up to 5 mm (¼ in), are known from Lava da Ilha de Taguáit, Minas Gerais, Brazil.

Whiteite-(CaFeMg)
$\text{55 mm, Yukon Territory, Canada}$
Jahnsite-(CaMnMg)

\[
\text{CaMnMg}_2\text{Fe}^{3+}_2\text{(PO}_4\text{)}_4\text{(OH)}_4 \cdot 8\text{H}_2\text{O}
\]

C MONOCLINIC

Properties: C - yellow, light to dark brown; S - light yellow; L - vitreous; D - transparent to translucent; DE - 2.6; H - not determined; CL - good; F - uneven; M - short to long prismatic crystals, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Perfect crystals up to 10 mm (\(\frac{1}{2}\) in) across occur in the Tip Top mine, Custer, South Dakota, USA. It is also known from Hagendorf, Germany.

Wardite

\[
\text{NaAl}^3\text{(PO}_4\text{)}_2\text{(OH)}_4 \cdot 2\text{H}_2\text{O}
\]

TETRAGONAL

Properties: C - colorless, white, greenish, light blue-green; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 5; CL - perfect; F - uneven; M - dipyramidal crystals, radial and hemispherical aggregates, coatings, crusts, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a product of primary phosphate replacement, hydrothermal in the cracks in P-rich sediments. Perfect crystals up to 30 mm (1\(\frac{1}{2}\) in) across come from Rapid Creek, Yukon, Canada. It is also known from Piedras Lavadas, Parana, Brazil.
Pharmacosiderite

KFe^{3+}_3(AsO_4)_3(OH)_{4-6}H_2O

Properties:
- **C:** green, yellow-brown, brown;
- **S:** white;
- **L:** adamantine to greasy;
- **D:** transparent to translucent;
- **DE:** 2.8;
- **I:** 2.5;
- **CL:** imperfect;
- **F:** uneven;
- **M:** cubic crystals, coatings, crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites and in the oxidation zone of ore deposits, where it forms as a product of arsenopyrite and lollingite replacement. Cubic crystals up to 10 mm (0.4 in) across occur in St. Day, Liskeard and Redruth, Cornwall, UK. It also comes from the Majuba Hill mine, Nevada, USA; Horhausen, Germany and Cap Garrone, France.

Arseniosiderite

CaFe^{3+}_3(AsO_4)_3O_{2-3}H_2O

Properties:
- **C:** yellow, light to dark brown;
- **S:** yellow;
- **L:** submetallic to silky;
- **D:** opaque;
- **DE:** 3.6;
- **H:** 1.5;
- **CL:** good;
- **F:** uneven;
- **M:** fibrous and earthy aggregates, coatings, crusts, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits and in granitic pegmatites, where it forms as a product of arsenopyrite and lollingite replacement. Rich aggregates occur in Romanche, France; also from the Eureka mine, Tintic, Utah, USA and Wittichen, Germany.

Lavendulan

NaCaCu_{5}(AsO_4)_4Cl . 5 H_2O

Properties:
- **C:** light blue-purple, blue;
- **S:** white;
- **L:** vitreous to waxy;
- **D:** translucent;
- **DE:** 3.5;
- **H:** 2.5;
- **CL:** good;
- **F:** uneven;
- **M:** acicular crystals, acicular and earthy aggregates, coatings.

Origin and occurrence: Secondary in the oxidation zone of Co, Cu and Ni deposits, as a result of arsenide weathering, associated with crythrite. Rich acicular aggregates come from Talmessi and Anarak, Iran. Small crystals found in the Blanca mine, San Juan, Chile and in Annaberg, Germany. Crystals up to 4 mm (0.16 in) across occur in the Gold Hill mine, Utah, USA.
Kovdorskite

Formula: $\text{BiCu}_6(\text{AsO}_4)_3(\text{OH})_6 \cdot 3 \text{H}_2\text{O}$

Crystal System: Hexagonal

Properties:
- **C:** emerald-green, blue-green, light blue, light green, whitish; **S:** light green, light blue; **L:** adamantine to dull; **D:** transparent to translucent; **DE:** 3.8; **H:** 3-4; **CL:** not determined; **F:** uneven; **M:** acicular crystals, acicular and earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone of Bi and Cu deposits, together with bismuthinite. It occurred in Jáchymov, Czech Republic; in Tintic, Utah, USA; Schnieberg and Wittichen, Germany.

Mixite

Formula: $\text{BiCu}_6(\text{AsO}_4)_3(\text{OH})_6 \cdot 3 \text{H}_2\text{O}$

Crystal System: Hexagonal

Properties:
- **C:** emerald-green, blue-green, light blue, light green, whitish; **S:** light green, light blue; **L:** adamantine to dull; **D:** transparent to translucent; **DE:** 3.8; **H:** 3-4; **CL:** not determined; **F:** uneven; **M:** acicular crystals, acicular and earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone of Bi and Cu deposits, together with bismuthinite. It occurred in Jáchymov, Czech Republic; in Tintic, Utah, USA; Schnieberg and Wittichen, Germany.

Torbernite

Formula: $\text{Cu}(\text{UO}_2)_2(\text{PO}_4)_2 \cdot 4-12 \text{H}_2\text{O}$

Crystal System: Tetragonal

Properties:
- **C:** emerald-green to grass-green; **S:** light green; **L:** vitreous to dull, pearly on the cleavage planes; **D:** transparent to translucent; **DE:** 3.3; **H:** 2-2.5; **CL:** perfect; **F:** uneven; **M:** tabular to pyramidal crystals, earthy aggregates, coatings, granular, massive; **R:** strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, also in pegmatites and sedimentary rocks, resulting from the hydrothermal alteration of uraninite and other U minerals. Emerald-green tabular crystals, several cm across, come from Sabugal, Portugal; Jáchymov, Czech Republic; Shinkolobwe, Zaire; Bois-Noirs, France; Moctezuma, Mexico and many localities in the Colorado Plateau, Utah, USA. Beautiful druses of crystals up to 20 mm (1 in) across, found in the Margabal mine, Aveyron, France.

Application: U ore.
Autunite

\[\text{Ca(UO}_2\text{)}_2(\text{PO}_4)_2 \cdot 10-12 \text{H}_2\text{O} \]

TETRAGONAL

Properties:
- \(C \) - light to dark yellow, yellow-green to green;
- \(S \) - light yellow;
- \(L \) - vitreous to dull;
- \(D \) - transparent to translucent;
- \(DE \) - 3.1:1;
- \(H \) - 2-2.5;
- \(CL \) - perfect;
- \(F \) - uneven;
- \(M \) - tabular crystals, foliated, scaly, earthy and pulverulent aggregates, coatings, massive;
- \(LU \) - yellow-green;
- \(R \) - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, in pegmatites and in some U-rich sedimentary rocks, as a result of hydrothermal alteration of uraninite and other U minerals. It is frequently associated with torbernite and other U secondary minerals. Tabular crystals up to 30 mm (1\(\frac{1}{8}\) in) across come from Schneeberg and Johanngeorgenstadt, Germany, and Autun, France. It is also known from Rum Jungle, Northern Territory, Australia; St. Austel, Cornwall, UK; Mount Spokane, Washington, USA and Jáchymov, Czech Republic.

Application: U ore.

Uranocircite

\[\text{Ba(UO}_2\text{)}_2(\text{PO}_4)_2 \cdot 10 \text{H}_2\text{O} \]

TETRAGONAL

Properties:
- \(C \) - light to dark yellow, light yellow-green;
- \(S \) - light yellow;
- \(L \) - vitreous to dull, pearly on the cleavage planes;
- \(D \) - transparent to translucent;
- \(DE \) - 3.1:1;
- \(H \) - 2-2.5;
- \(CL \) - perfect;
- \(F \) - uneven;
- \(M \) - tabular crystals, foliated, scaly, earthy and pulverulent aggregates, coatings, massive;
- \(LU \) - yellow-green;
- \(R \) - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, in pegmatites and in some U-rich sedimentary rocks, as a result of hydrothermal alteration of uraninite and other U minerals. It is frequently associated with torbernite and other U secondary minerals. Tabular crystals up to 30 mm (1\(\frac{1}{8}\) in) across come from Schneeberg and Johanngeorgenstadt, Germany, and Autun, France. It is also known from Rum Jungle, Northern Territory, Australia; St. Austel, Cornwall, UK; Mount Spokane, Washington, USA and Jáchymov, Czech Republic.

Application: U ore.
Nováckite
\[\text{Mg(UO}_2\text{)}_2\text{(AsO}_4\text{)}_2 \cdot 10\text{H}_2\text{O} \]

TETRAGONAL

Properties: C - straw-yellow, light yellow; S - light yellow; L - vitreous to dull; D - transparent to translucent; DE - 3.7; H - 2.5; CL - perfect; F - uneven; M - tabular crystals, lamellar, earthy and pulverulent aggregates, massive; LU - dark green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits. Tabular crystals up to 50 mm (2 in) across come from the Pedra Preta Mine, Brumado, Bahia, Brazil. Lamellar aggregates are known from Zalesí, Czech Republic; Aldama, Chihuahua, Mexico; Wittichen, Germany.

Zeunerite
\[\text{Cu(UO}_2\text{)}_2\text{(AsO}_4\text{)}_2 \cdot 10\text{H}_2\text{O} \]

TETRAGONAL

Properties: C - emerald-green, yellow-green; S - light green; L - vitreous to dull; D - transparent to translucent; DE - 3.4; H - 2.5; CL - perfect; F - uneven; M - tabular crystals, foliated aggregates, massive; LU - weak yellow-green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits. Tabular crystals up to 30 mm (1\(\frac{3}{4}\) in) across come from the Pedra Preta Mine, Brumado, Bahia, Brazil. It is also known from Zalesí, Czech Republic and Schneeberg, Germany.

Carnotite
\[\text{K}_2\text{(UO}_2\text{)}_2\text{(VO}_4\text{)}_3 \cdot 3\text{H}_2\text{O} \]

MONOCLINIC

Properties: C - light to dark yellow, yellow-green; S - light yellow; L - dull; D - transparent to translucent, opaque; DE - 4.9; H - not determined; CL - perfect; F - uneven; M - earthy aggregates, massive; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of sedimentary U deposits, typically associated with tyuyamunite. Platy crystals, up to 2 mm (\(\frac{3}{16}\) in) across found in the Mashamba West mine, Zaire. Earthy and pulverulent aggregates occur in many localities in the Colorado Plateau, e.g. Paradox Valley, Colorado and La Sal, Utah, USA. Also known from Tyuya Muyun, Uzbekistan and Radium Hill, Southern Australia, Australia.

Application: U and V ore.

Tyuyamunite
\[\text{Ca(UO}_2\text{)}_2\text{(VO}_4\text{)}_2 \cdot 5-8\text{H}_2\text{O} \]

ORTHORHOMBIC

Properties: C - yellow-green, canary yellow; S - light yellow; L - silky to adamantine; D - translucent to opaque; DE - 3.6; H - 2; CL - perfect; F - uneven; M - earthy aggregates, massive; LU - weak yellow-green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of sedimentary U deposits, together with carnotite. Common earthy and pulverulent aggregates occur in many localities in the Colorado Plateau, e.g. Paradox Valley, Colorado and Red Creek, Utah, USA. It was described from Tyuya Muyun, Uzbekistan.

Application: U and V ore.

Tyuyamunite, 80 mm, Fergana, Uzbekistan

Carnotite, 55 mm, Utah, U.S.A.
9. Silicates

Phenakite

\[
\text{Be}_2\text{SiO}_4
\]

TRIGONAL • • •

Properties: C - colorless, white, yellowish; S - white; L - strong vitreous; D - transparent to translucent; DE - 3.0; H - 8; CL - imperfect; F - conchoidal; M - long prismatic to tabular crystals, radial aggregates, granular.

Origin and occurrence: Magmatic in granitic pegmatites; hydrothermal in greisens; metamorphic in mica schists, associated with beryl, chrysoberyl, apatite and quartz. Prismatic crystals up to 250 mm (9 3/4 in) long occurred in Kragerø, Norway. It is also known from São Miguel de Piracicaba, Minas Gerais, Brazil in crystals, up to 100 mm (4 in) long. The other localities are Habachtal, Austria; Malyshevo, Russia; Anjanabonoina, Madagascar.

Application: sporadically cut as a gemstone.

Willemite

\[
\text{Zn}_2\text{SiO}_4
\]

TRIGONAL • • •

Properties: C - white, yellowish, gray, green; S - white; L - vitreous; D - translucent; DE - 4.0; H - 5.5; CL - good; F B conchoidal to uneven; M - prismatic to tabular crystals, radial aggregates, granular; LU - distinct light green.

Origin and occurrence: Metamorphic in marbles; secondary in the oxidation zone of ore deposits, associated with zincite, franklinite, hemimorphite and smithsonite. Crystals up to 100 mm (4 in) across come from Franklin, New Jersey, USA, Mont St.-Hilaire, Quebec, Canada.

Application: as Zn ore.
Forsterite

OLIVINE GROUP

Mg$_2$SiO$_4$

ORTHORHOMBIC

Properties:
- C: yellowish, greenish, colorless
- S: white
- L: vitreous
- D: transparent to opaque
- DE: 3.3
- H: 6.5-7
- CL: good
- F: conchoidal to uneven
- VI: tabular to prismatic crystals, granular

Origin and occurrence:
Metamorphic in regionally and contact metamorphosed dolomites. Typical rock-forming mineral, associated with enstatite, spinel, phlogopite and chlorite. Green gemmy crystals up to 80 mm (3½ in) long come from Suppat, Pakistan. It also occurred in Crestmore, California, USA, Mount Timobly, British Columbia, Canada and Monte Somma, Italy.

Olivine

OLIVINE GROUP

(Mg,Fe)$_2$SiO$_4$

ORTHORHOMBIC

Varieties:
- chrysolite

Properties:
- C: green, yellow-green (chrysolite), brown-green to black-green
- S: white
- L: vitreous
- D: translucent to opaque
- DE: 3.3-3.6
- H: 6.5-7
- CL: good
- F: conchoidal to uneven
- VI: imperfect crystals, granular

Origin and occurrence:
Magmatic in some ultrabasic rocks, e.g. dunites, lherzolites, peridotites, gabbros and in meteorites. Typical rock-forming mineral, usually associated with diopside, magnetite and pyrope. Classic locality of chrysolite is Zebirget Island in the Red Sea, Egypt, where tabular crystals
Olivine. 60 mm. Smrci, Czech Republic

up to 100 mm (4 in) across occurred. It is also known from the San Carlos Indian Reservation, Arizona, USA. Olivine was found in many basaltic rocks in Lacheer See, Germany; Rockport, Massachusetts, USA and elsewhere.

Application: chrysolite is cut as a gemstone.

Fayalite
OLIVINE GROUP
Fe₂SiO₄

ORTHORHOMBIC • • •

Properties: C - black-green to black; S - gray; L - dull to vitreous; D - opaque; DE - 4.2; H - 6.5-7; CL - good; F B conchoidal to uneven; M - imperfect prismatic crystals, granular.

Origin and occurrence: Magmatic in granite pegmatites, granites and syenites, associated with orthoclase, gadolinite-(Y) and epidote; rare metamorphite. Poorly developed crystals up to 150 mm (6 in) long found in pegmatites near Bavone, the Alps, Italy.

Fayalite. 60 mm. Rockport, U.S.A.

Tephroite
OLIVINE GROUP
Mn₂SiO₄

ORTHORHOMBIC • • •

Properties: C - gray, olive-green, red-brown; S - white; L - dull to vitreous; D - translucent to transparent; DE - 4.2; H - 6; CL - good; F B conchoidal to uneven; M - prismatic crystals, granular.

Origin and occurrence: Metamorphic in skarns and Mn-rich metamorphosed sediments, together with modonite, franklinite and spessartine. Granular aggregates and perfect crystals up to 50 mm (2 in) across known from Franklin, New Jersey, USA; Langban, Sweden. It comes also from Tarnobrzeg, Poland, in crystals, up to 80 mm (3 3/4 in) across.

Tephroite. 60 mm. Harstigen, Sweden

It is also known from Strzegom, Poland and the Sawtooth Batholith, Idaho, USA.
Pyrope, 3 mm grains, Trebülice, Czech Republic

Pyrope GARNET GROUP

\[\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_12 \]

Properties:
- C: red to purple-red, light purple, black-brown;
- S: white;
- L: vitreous;
- D: transparent to translucent;
- DE: 3.5;
- H: 7-7.5;
- CL: none;
- F: B conchoidal to uneven;
- M: isometric crystals, granular.

Origin and occurrence: Magmatic in some ultra-basic rocks, e.g., lherzolites, peridotites, kimberlites, eclogites and serpentinites; metamorphic in quartzites; also known from placers. It is associated with diopside, magnetite and diamond. It comes from many localities in ultrabasic rocks, like Trebenice and Mirunice, Czech Republic; Zoblitz, Germany; Madras, India; Kimberley, South Africa. Crystals up to 250 mm (9.5 in) across were found in Dora Maria, the Alps, Italy.

Application: cut as a gemstone.

Almandine GARNET GROUP

\[\text{Fe}_3\text{Al}_2\text{Si}_3\text{O}_12 \]

Properties:
- C: red to purple-red, black-brown;
- S: white;
- L: vitreous;
- D: transparent to translucent;
- DE: 4.3;
- H: 7;
- CL: none;
- F: B conchoidal to uneven;
- M: well-formed crystals, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, as chlorite schists, gneisses, etc.

Spessartine, 96 mm, Gilgit, Pakistan
Grossular, 17 mm x, Asbestos, Canada

mica schists and migmatites; magmatic in some granites and pegmatites; also in placers. Well-developed crystals up to 150 mm (6 in) across are known from Ishikawa pegmatites, Japan and Shingus, Pakistan. It comes from many mica schists and gneisses as crystals, up to about 50 mm (2 in), like Fort Wrangel, Alaska, USA; Ötztal, Austria; Bodo, Norway. It occurs in placers near Ratnapura, Sri Lanka.

Application: cut as a gemstone, abrasive material.

Spessartine
GARNET GROUP

Varieties: hessonite, tsavorite

Properties: C - red, orange, light brown to yellowish; S - white; L - vitreous; D - transparent to translucent; DE - 4.3; H - 7-7.5; CL - none; F B conchoidal to uneven; M - perfect crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites and some granites; hydrothermal in cavities in rhyolites; metamorphic in some skarns and Mn-rich metamorphic rocks. Perfect crystals up to 30 mm (11/4 in) across were found in granitic pegmatites in the Hercules mine, Ramona, California, USA; near Marienfluss river, Namibia and in rhyolitic cavities in Nathrop, Colorado, USA.

Gemmy crystal fragments up to 50 mm (2 in) across were recently found in an undisclosed locality in Minas Gerais, Brazil.

Application: cut as a gemstone.
Andradite
GARNET GROUP
\[\text{Ca}_3\text{Fe}^{3+}_2\text{Si}_3\text{O}_{12} \]

CUBIC

Varieties: demantoid, melanite.

Properties: C - dark red, black-brown, brown, green to yellow-green; melanite, black-brown to black; S - white; L - vitreous; D - transparent to translucent; DE - 3.9; H - 6.5-7; CL - none; FB conchoidal to uneven; MB well-developed crystals, granular.

Origin and occurrence: Metamorphic in Ca and Fe rich contact metamorphosed rocks; skarns, rhyolites; hydrothermal along the cracks of these rocks; magmatic in some alkaline igneous rocks, usually in the same localities as grossular. Crystals up to 40 mm (1.5 in) across come from Smolenskoye, Russia. Fine crystals were also found in the Namgar mine, Usakow, Namibia and Ciclova, Romania. Fine melanite crystals occur in Magnet Cove, Arkansas, USA. Demantoid crystals up to 30 mm (1.1 in) across known from Val Malenco, Italy and in the Bobrovka river basin, Ural mountains, Russia.

Application: demantoid is cut as a gemstone.

Demantoid, 3 mm ss, Bobrovka, Russia

Melanite, 5 mm ss, Rudnyi, Kazakhstan
Uvarovite
GARNET GROUP
\[Ca_3Cr_2Si_3O_{12}\]

CUBIC

Properties:
- **C** - dark emerald-green; **S** - white; **L** - vitreous; **D** - transparent to translucent; **DE** - 3.9; **H** - 6.5-7; **CL** - none; **F** B conchoidal to uneven; **M** - perfect crystals, granular.

Origin and occurrence: Metamorphic and also hydrothermal are almost only limited to rocks with increased Cr content, ultrabasic rocks with chromite, serpentinites and skarns. It occurs as crystals up to 8 mm (\(\frac{1}{4}\) in) across along cracks in chromite in Sarany, Ural mountains, Russia. Crystals up to 20 mm (\(\frac{3}{4}\) in) across, come from Outokumpu, Finland. It is also known from Orford, Quebec, Canada.

Zircon
\[ZrSiO_4\]

TETRAGONAL

Varieties: jargon, hyacinth.

Properties:
- **C** - yellow (jargon), brown, yellow-brown, red-orange (hyacinth), red to colorless; **S** - white; **L** - vitreous, greasy to adamantine; **D** - transparent to translucent; **DE** - 4.7; **H** - 7.5; **CL** - imperfect; **F** B conchoidal to uneven; **M** - perfect long and short prismatic crystals, granular; **LU** - yellow; **R** B sometimes radioactive and usually metamict.

Origin and occurrence: Magmatic and metamorphic as an accessory mineral in different rock types; rarely hydrothermal in the Alpine-type and quartz veins; also in sediments and placers. Prismatic crystals up to 30 cm (12 in) across, occur in syenite pegmatites in Renfrew and Bancroft, Ontario, Canada. It is also known from Miass, Ural mountains and from Mount Vavilov, Lovozero massif, Kola Peninsula, Russia. Classic occurrences in granitic pegmatites are Alto Ligonha, Mozambique; Arendal, Norway; Ytterby, Sweden and Jaguaquiu, Minas Gerais, Brazil. Gemmy zircons of different colors up to 80 mm (3\(\frac{1}{4}\) in) in size come from placers near Ratnapura, Sri Lanka and elsewhere.

Application: hyacinth and jargon are cut as gemstones, Zr ore.
Eulytine
\[\text{Bi}_4\text{Si}_3\text{O}_{12} \]

CUBIC

Properties: C - brown, yellow, gray, colorless; S - white; L - greasy; D - translucent; DE - 6.5; H - 4.5; CL - good; F B conchoidal to uneven; M - small dipyramidal crystals, radial aggregates, granular.

Origin and occurrence: Secondary in Bi deposits, typically associated with bismuth. Its small crystals come from Horni Slavkov, Czech Republic; Schneeberg and Johanngeorgenstadt, Germany.

Euclase
\[\text{BeAlSi}_4\text{O}_{10}(\text{OH}) \]

MONOCLINIC

Properties: C - colorless, white, greenish, blue; S - white; L - vitreous; D - transparent to translucent; DE - 3.1; H - 7.5; CL - good; F B conchoidal to uneven; M - small dipyramidal crystals, radial aggregates.

Origin and occurrence: Secondary in Bi deposits, typically associated with bismuth. Its small crystals come from Minas Novas, Brazil.
uneven: M – long prismatic crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal occurs in pegmatites, greisens and in quartz and Alpine-type veins; rare in placers. Well-formed crystals up to 80 mm (3¼ in) in size known from Santa do Encoberto, Minas Gerais, Brazil. Blue crystals up to 50 mm (2 in) across occurred in the Last Hope Mine, Karoi, Zimbabwe. It also come from the sediments of Sanarka River, Ural mountains, Russia. Dark blue crystals up to 150 mm (6 in) across were found recently in the Chivor Mine, Colombia.

Application: locally cut as a gemstone.

Sillimanite

Al_2SiO_5

Orthorhombic

Properties:
- C - white, gray, greenish, yellowish: S - white: L - vitreous to dull; D - transparent to translucent; DE - 3.3; H - 6.5-7.5; CL - good; F - uneven; M - long prismatic crystals, fibrous aggregates, granular.

Origin and occurrence: Almost exclusively metamorphic in gneisses and migmatites; only rare magmatic in pegmatites and granites; also in placers. Typical rock-forming mineral, very commonly associated with andalusite. Typical localities are Bodenmais, Germany and Mar'ikov, Czech Republic. Gemmy crystals up to 20 mm (¾ in) long are known from Rakwana-Deniyaya, Sri Lanka.

Andalusite

Al_2SiO_5

Orthorhombic

Varieties: chiastolitic, viridine

Properties:
- C - pink, red-brown, red, gray, whitish, green (viridine): S - white; L - vitreous to dull; D - translucent to transparent; DE - 3.2; H - 6.5-7.5; CL - good; F - uneven; M - prismatic crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Metamorphic in regionally and contact metamorphosed rocks; magmatic in pegmatites and granites, hydrothermal in quartzites. Typical rock-forming mineral, commonly associated with sillimanite, corundum and cordierite. Renowned localities are Lisens, the Alps, Austria; Bimbowrie, South Australia, Australia. Green gemmy crystals come from Morro do Chapeu, Bahia, Brazil. Viridine is known from Darmstadt, Germany.
Kyanite
Al_2SiO_5

TRICLINIC • • • •

Properties: C - blue, gray, white, green, dark gray, colorless; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.6; H - 4.5-7.5; CL - good; F - uneven; M - prismatic to tabular crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Almost only metamorphic in regionally metamorphosed rocks, mica schists, greisses, granulites and eclogites; less frequently magmatic in pegmatites and granites; rarely hydrothermal in quartz veins. Typical rock-forming mineral, associated with andalusite and sillimanite. Blue columnar aggregates and crystals up to 150 mm (6 in) long occur in Barra do Salinas, Minas Gerais, Brazil. Other renowned localities are Pizzo Forno, Switzerland; Prilep, Macedonia; Keivy, Kola Peninsula, Russia.

Kyanite. 87 mm. Minas Gerais, Brazil

Topaz
$\text{Al}_2\text{SiO}_4(\text{F,OH})$

ORTHORHOMBIC • • •

Varieties: pyenite

Properties: C - colorless, blue, yellow, gray, white, greenish, pinkish, red; S - white; L - vitreous; D - transparent to translucent; DE - 3.6; H - 8; CL - good; F - uneven; M - perfect prismatic to tabular crystals, radial and columnar aggregates, granular.

Origin and occurrence: Magmatic in pegmatites and granites; hydrothermal in greisens, in rhyolite cavities, in quartz veins, also in placers. Topaz crystals in pegmatites are occasionally very large, like the crystal measuring 80 x 60 x 60 cm (31 1/2 x 24 x 24 in) across from Fazenda do Funil; crystals
Topaz. 49 mm. Ramona, U.S.A.

up to 30 cm (12 in) from Virgem da Lapa, both Minas Gerais, Brazil. Blue, brownish and bicolor crystals up to 40 cm (15% in) long come from Volodarsk Volynskii, Ukraine. Other topaz localities are Iveland, Norway; Murzinka, Ural mountains, Russia; Little Three mine, Ramona, California; Pikes Peak, Colorado, USA; Gilgit, Pakistan; Spitzkopje, Namibia. Orange to red topaz (imperial topaz) comes from quartz veins near Ouro Preto, Minas Gerais, Brazil. Pink topaz crystals up to 70 mm (2 3/4 in) found at Mount Ghundao, Mardan, Pakistan. Important topaz specimens were also found in Schneckenstein, Germany; Thomas Range, Utah, USA; Nerchinsk, Siberia, Russia. Columnar aggregates of pynite come from Cinovec, Czech Republic and Altenberg, Germany.

Application: cut as a gemstone.
Staurolite

Fe₂Al₄Si₄O₂₂(OH)₂

Orthorhombic • • • •

Properties:
- C: dark to light brown, yellow; S: white; L: dull to vitreous; D: transparent to almost opaque; DE: 3.7; H: 7-7.5; CL: good; F: uneven.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, gneisses and mica schists; rare magmatic in granites; also in placers, commonly associated with almandine, andalusite and kyanite. Crystals up to 50 mm (2 in) across come from Pizzo Forno, Switzerland. It is also known from Rio Arriba, New Mexico, USA. Its cross-like twins, up to 200 mm (7 3/4 in) across, occur in Keivy, Kola Peninsula, Russia and Morbihan, France.

Sapphirine

Mg₂Al₄SiO₁₀

Monoclinic • • •

Properties:
- C: dark to light blue, green; S: white; L: vitreous to dull; D: transparent to translucent; DE: 3.5; H: 7.5; CL: imperfect; F: uneven; M: tabular crystals, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, rich in Al and Mg and poor in Si, associated with spinel and corundum. Crystals up to 40 mm (1 7/8 in) across come from Fiskenasset, Greenland; Betroka and Androy, Madagascar. Other localities include Val Cudera, Italy and Enderby Land, Antarctica.
Chondrodite

\[\text{Chondrodite} = \text{Mg}_5\text{Si}_2\text{O}_8(\text{OH},\text{F})_2 \]

Properties:
- **C:** yellow, greenish, brown; **S:** white;
- **L:** vitreous to dull; **D:** transparent to translucent;
- **DE:** 3.2; **H:** 6-6.5; **CL:** imperfect; **F:** uneven; **M:** crystals of different habits, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed carbonate rocks; rare magmatic in carbonatites, typically associated with spinel, chlorite and phlogopite. Perfect crystals up to 50 mm (2 in) long come from the Tilly Foster mine, Brewster, New York, USA. Other localities are Pargas, Finland; Monte Somma, Italy; Riverside, California, USA.

Clinohumite

\[\text{Clinohumite} = \text{Mg}_9\text{Si}_4\text{O}_{16}(\text{OH},\text{F})_2 \]

Properties:
- **C:** yellow, red, brown, white; **S:** white;
- **L:** vitreous to dull; **D:** transparent to translucent;
- **DE:** 3.3; **H:** 6; **CL:** imperfect; **F:** uneven; **M:** crystals of different habits, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed carbonate rocks, serpentinites and talc schists, associated with spinel, chlorite, forsterite, serpentine and phlogopite. Gemmy yellow crystals up to 30 mm (1 1/4 in) across come from Kukh-i-Lal, Pamir, Tajikistan. Other localities are Pargas, Finland; Monte Somma, Italy; Jensen quarry, California, USA.

Chapmanite

\[\text{Chapmanite} = \text{SbFe}_2^+\text{Si}_2\text{O}_8(\text{OH}) \]

Properties:
- **C:** olive-green to dark yellow; **S:** yellowish to yellow;
- **L:** vitreous to dull; **D:** transparent to translucent;
- **DE:** 3.7; **H:** 2.5; **CL:** imperfect; **F:** uneven; **M:** elongated crystals, massive.

Origin and occurrence: Hydrothermal and secondary in the cracks of rocks, sometimes with stibnite. Its massive aggregates occur in Smilkov near Votice, Czech Republic; in the Keely mine, Cobalt, Ontario, Canada.
Braunite, 60 mm. Langban, Sweden

Braunite

\[\text{Mn}^{2+}\text{Mn}^{3+}_{6}\text{SiO}_4 \]

TETRAGONAL • • •

Properties:

Origin and occurrence: Metamorphic in regionally and contact metamorphosed rocks; hydrothermal in sedimentary rocks rich in Mn and in hydrothermal veins, associated with hausmanite, pyrolusite and other Mn minerals. Its perfect crystals up to 70 mm (2¼ in) long, come from Kacharhavee and Tirodi, India. It is also known from Langban, Sweden; Lifeld and Ilmenau, Germany; St. Marcel, Italy; Tizi Bashkun, Morocco.

Application: Mn ore.

Thaumasite

\[\text{Ca}_6\text{Si}_4\text{(CO}_3\text{)}_2\text{(SO}_4\text{)}_2\text{(OH)}_2 \cdot 24 \text{H}_2\text{O} \]

HEXAGONAL • •

Properties:
- C - white to colorless: S - white: L - vitreous to dull: D - transparent to translucent: DE - 1.9: H - 3.5: CL - imperfect: F - uneven: M - acicular aggregates, granular, massive; LU - white.

Origin and occurrence: Hydrothermal or metamorphic in contact metamorphosed carbonate rocks, usually associated with other Ca silicates and carbonates, like ettringite and prehnite. Typical localities are Crestmore, California; West Paterson, New Jersey, USA; Langban, Sweden; N'Chwaning mine No. 2, Kuruman, South Africa.

Titanite

\[\text{CaTiOSiO}_4 \]

MONOCLINIC • • • •

Properties:
- C - colorless, yellow, brown, green, gray to black: S - white: L - vitreous to dull: D - transparent, translucent to opaque: DE - 3.5: H - 5-5.5: CL - good: F - uneven to conchoidal: M - tabular crystals and their combinations, granular, massive.

Origin and occurrence: Metamorphic and magmatic as a common accessory mineral in many igneous and

Fersmanite, 10 mm x, Khibiny Massif, Kola, Russia
metamorphic rocks and pegmatites; hydrothermal in the Alpine-type veins; also in placers.
The most beautiful crystals up to 180 mm (7 1/8 in) long occur in Alpine-type veins in Tavetsch and Binntal, Switzerland; Zillertal and Felbertal, Austria; Dodo, Polar Ural, Russia. Large, poorly developed crystals weighing up to 40 kg (88 lb), come from Eganville, Ontario, Canada and Rossie, New York, USA.

Fersmanite
\[(\text{Na}_4\text{Ca})_4\text{(Ti,Nb)}_2\text{Si}_2\text{O}_{11}(\text{OH,F})_2\]

TRICLINIC

Properties: C - light to dark brown; S - white; L - vitreous to dull; D - translucent; DE - 3.5; H - 5.5; CL - none; F - uneven to conchoidal; M - tabular crystals.

Origin and occurrence: Magmatic to hydrothermal in alkaline pegmatites together with pectolite, apatite and sulfides. Crystals up to 30 mm (1 3/16 in) across known from Mount Eveslogchorr, Khibiny massif, Kola Peninsula, Russia.

Chloritoid
\[\text{Fe}_2\text{Al}_4\text{Si}_2\text{O}_{10}(\text{OH})_2\]

MONOCLINIC, TRICLINIC

Properties: C - dark gray, gray-green to black-green; S - gray; L - vitreous to dull; D - translucent; DE - 3.6; H - 6.5; CL - perfect; F - uneven to conchoidal; M - tabular crystals, foliated and scaly aggregates, granular.

Origin and occurrence: Metamorphic in some mica schists and phyllites; hydrothermal alteration product in lavas. Typical localities are Zermatt, Switzerland; Ottrez, Belgium; Pregratten, Austria.
Datolite

CaBSi0$_4$(OH)

MONOCLINIC

Properties:
- C - white to colorless, yellowish, greenish, gray; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.1; H - 5-5.5; CL - none; F - uneven to conchoidal; M - prismatic to tabular crystals, nodules, granular.

Origin and occurrence:
Metamorphic and hydrothermal in contact metamorphosed rocks, in cavities in volcanic rocks, in ore veins and pegmatites. It is commonly associated with zeolites, prehnite, calcite and also with tourmaline. Prismatic and tabular crystals up to 100 mm (4 in) long occur in Dalnegorsk, Russia. Other typical localities are West Paterson, New Jersey; Keweenaw Peninsula, Michigan, USA; Haslach, Germany; Charcas, San Luis Potosí, Mexico.

Gadolinite-(Y)

Y$_2$FeBe$_2$Si$_2$O$_{10}$

MONOCLINIC

Properties:
- C - black, dark red, brown, greenish; S - gray-green; L - vitreous to greasy; D - transparent to translucent; DE - 4.4; H - 6.5-7; CL - none; F - Howlite, 30 mm, California, USA.
Dumortierite, 60 mm, Dehesa, U.S.A.

Kornerupine
\[Mg_4\text{Al}_6\{(Si,Al,B)O_3\}O_2(OH) \]

ORTHORHOMBIC

Properties: C - colorless, white, greenish, gray, brown; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.3; H - 6.5-7; CL - none; F - conchoidal; M - prismatic crystals, radial aggregates, granular.

Origin and occurrence: Metamorphic in strongly metamorphosed rocks, as granulites. Crystals up to 230 mm (9 1/4 in) across known from Fiskenaeset, Greenland. It also occurs in Lac Ste-Marie, Quebec, Canada; Waldheim, Germany; Itrongay, Madagascar.

Howlite
\[Ca_2\text{B}_5\text{SiO}_9(OH)_5 \]

MONOCLINIC

Properties: C - white; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.5; H - 3.5; CL - good; F - uneven; M - tabular crystals, nodules, massive.

Origin and occurrence: Hydrothermal in borate deposits, associated with ulexite and colemanite. Crystals, several cm across, come from the vicinity of Bras d’Or Lake, Nova Scotia, Canada. It occurs also in Lang and Daggett, California, USA.

Dumortierite
\((Al,Ti)\text{Mg}_4\text{Al}_6\text{Si}_3\text{O}_{16}\text{O(OH)}_2\)

ORTHORHOMBIC

Properties: C - purple, pink, blue, brown; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.4; H - 8.5; CL - good; F - uneven; M - prismatic crystals, radial and acicular aggregates, massive.

Origin and occurrence: Metamorphic in some Al-rich metamorphic rocks, e.g. in migmatites and gneisses; magmatic in granites and pegmatites; hydrothermal in altered rocks. It comes from Dehesa, California; Rochester, Nevada, USA; Beau- nan, France; crystals are known from the vicinity of Kutna Hora, Czech Republic; Soavina, Madagascar.

Origin and occurrence: Magmatic in granites and pegmatites, locally associated with fluorite and allanite; rare hydrothermal in the Alpine-type veins. Aggregates, up to 40 cm (15 3/4 in) across come from Hittero, Norway. Barringer Hill and Clear Creek, Texas, USA yielded aggregates, weighing up to 90 kg (198 lb). Other famous localities are Blatchford Lake, Northwest Territories, Canada; Baveno, the Alps, Italy; Iveland, Evje, Norway.

Origin and occurrence: Metamorphic in granites and pegmatites, locally metamict. Origin and occurrence: Magmatic in granites and pegmatites, locally associated with fluorite and allanite; rare hydrothermal in the Alpine-type veins. Aggregates, up to 40 cm (15 3/4 in) across come from Hittero, Norway. Barringer Hill and Clear Creek, Texas, USA yielded aggregates, weighing up to 90 kg (198 lb). Other famous localities are Blatchford Lake, Northwest Territories, Canada; Baveno, the Alps, Italy; Iveland, Evje, Norway.
Cuprosklodowskite
\(\text{Cu(UO}_2\text{)}_3\text{Si}_2\text{O}_{7} \cdot 6 \text{H}_2\text{O} \)

MONOCLINIC

Properties:
- C - various hues of green; S - greenish; L - vitreous to dull; D - transparent to translucent;
- DE - 3.8; HI - 4; CL - good; F - uneven; M - radial, acicular aggregates, thin coatings, granular, massive;
- R - strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, associated with autunite, torbernite, uranophane and other U secondary minerals. Crystals, up to several cm long, come from Kasolite, 30 mm. Muman. Zair.
the Mashamba West mine, Musonoi, Zaire. It also occurred in Jáchymov, Czech Republic.

Uranophane

\[\text{Ca(UO}_2\text{)}_2\text{Si}_2\text{O}_7 \cdot 6\text{H}_2\text{O} \]

MONOCLINIC

Properties: C – various hues of yellow to brown; S – yellowish; L – vitreous to dull; D – transparent to translucent; DE – 3.9; H – 2.5; CL – good; F – uneven; M – radial, acicular aggregates, thin coatings, granular, massive; LU – yellow-green; R – strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits as a product of uraninite alteration, associated with autunite, torbernite and other secondary U minerals. Needles up to 10 mm (¼ in) long, come from Musonoi, Shinkolobwe, Zaire. It is also known from the Faraday mine, Bancroft, Ontario, Canada. It occurs in Wolsendorf, Germany, as well as in Jáchymov, Czech Republic.

Kasolite

\[\text{Pb(UO}_2\text{)}\text{SiO}_4 \cdot \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – various hues of yellow, green to brown; S – yellowish; L – vitreous to dull; D – translucent to opaque; DE – 6.2; H – 4.5; CL – good; F – uneven; M – prismatic crystals, radial and acicular aggregates, thin coatings, granular, massive; R – strong radioactive.

Origin and occurrence: Secondary mineral in the oxidation zone of U deposits. It is a product of uraninite alteration and is associated with uranophane, torbernite and U hydroxides. Crystals up to 10 mm (¼ in) long occur in Shinkolobwe, Kasolo, Zaire and Mounana, Gabon. It is also known from the Faraday mine, Bancroft, Ontario, Canada. It occurs in Wolsendorf, Germany, as well as in Jáchymov, Czech Republic.

Akermanite

\[\text{Ca}_2\text{MgSi}_2\text{O}_7 \]

TETRAGONAL

Properties: C – white, gray, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.0; H – 5-6; CL – good; F – uneven to conchoidal; M – short prismatic crystals, granular.

Origin and occurrence: Magmatic in volcanic basic rocks; metamorphic in contact metamorphic marbles. It occurs in Crestmore, California, USA; Monzoni, Italy; Oraviza, Romania and elsewhere.
Ilvaite

\[\text{CaFe}_{2+2}\text{Fe}_3\text{Si}_2\text{O}_8(\text{OH}) \]

ORTHORHOMBIC • • •

Properties: C - black to black-gray; S - black; L - submetallic to dull; D - opaque; DE - 4.1; H - 5.5-6; CL - good; F - uneven; M - prismatic crystals, granular.

Origin and occurrence: Metamorphic and hydrothermal in contact metamorphosed Fe, Zn and Cu deposits. Prismatic crystals up to 100 mm (4 in) long come from Rio Marina, Elba, Italy. Crystals up to 30 cm (12 in) long are known from Serifos Island, Greece. Crystals, several cm long occur also in Dalnegorsk, Russia and in the Laxey mine, Idaho, USA.

Bertrandite

\[\text{Be}_4\text{Si}_2\text{O}_7(\text{OH})_2 \]

ORTHORHOMBIC • • •

Properties: C - colorless, white, yellowish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.6; H - 6-7; CL - perfect; F - uneven; M - tabular crystals and their combinations, radial aggregates, granular, massive.

Origin and occurrence: Hydrothermal in granitic pegmatites, greisens and in hydrothermal veins, together with beryl, also as pseudo-morphs after beryl. Tabular crystals up to 50 mm (2 in) across occur in Concelheira Pena, Minas Gerais, Brazil. It is known from Kounrad and Kara-Oba, Kazakhstan in crystals up to 30 mm (1 3/4 in) across. It also comes from Stoneham, Maine, USA; Pisek, Czech Republic and Iceland, Norway.

Application: the most important Be ore.

Hemimorphite

\[\text{Zn}_4\text{Si}_2\text{O}_7(\text{OH})_2 \cdot \text{H}_2\text{O} \]

ORTHORHOMBIC • • •

Properties: C - colorless, white, yellowish, greenish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.4; H - 4.5-5; CL - perfect; F - uneven; M - tabular crystals and their combinations, botryoidal and radial aggregates, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Zn deposits, associated with sphalerite, smithsonite and cerussite. Crystals up to 100 mm (4 in) long come from Bisbee, Arizona, USA. It is also from the El Potosi Mine, Santa Eulalia, Chihuahua, Mexico; Bleiberg, Austria; Cho-Dien, Vietnam.

Application: Zn ore.
Lamprophyllite
Na₂Sr₂Ti₃Si₄O₁₆(OH,F)₂

MONOCLINIC

Properties: C - brown to dark brown; S - white; L - vitreous to submetallic; D - translucent; DE - 3.5; H - 2-3; CL - perfect; F - uneven; M - tabular crystals.

Origin and occurrence: Magmatic in alkaline syenites and their pegmatites, associated with nepheline, aegirine and eudialyte. The best crystals up to 150 mm (6 in) long come from Mount Flora, Lovozero massif, Kola Peninsula, Russia. It is also known from Langesundsfjord, Norway and Mont St.-Hilaire, Quebec, Canada.

Hemimorphite, 30 mm xx, Lovozero Massif, Kola, Russia
Clinozoisite

\[\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_12(\text{OH}) \]

Properties: C - colorless, yellowish, green, pink; S - white; L - vitreous to dull; PS - transparent to translucent; DE - 3.4; H - 6.5; CL - good; F - uneven; M - prismatic crystals, columnar and radial aggregates, granular, massive.

Origin and occurrence: Metamorphic in marble/granite contacts; hydrothermal in the Alpine-type veins and in hydrothermally altered rocks, typically associated with albite, prehnite and amphibole. Its green crystals up to 140 mm (5½ in) long, were found in Sobotin, Czech Republic. Perfect crystals up to 100 mm (4 in) across come from Knappenwand, Austria. Thick tabular crystals occur in Prince of Wales Island, Alaska, USA. Fine crystals, resembling Austrian crystals, were found recently in Alchuri, Shigar, Pakistan. Fine columnar aggregates of crystals are known from Pampa Blanca, Peru and also reported from Arendal, Norway.

Epidote

\[\text{Ca}_2(\text{AlFe}^{3+}_3)\text{Si}_3\text{O}_12(\text{OH}) \]

Properties: C - green, brown, greenish, yellow-green; S - white; L - vitreous to dull; D - translucent, locally opaque; DE - 3.4; H - 6-7; CL - good; F - uneven; M - prismatic crystals, columnar and radial aggregates, granular, massive.

Origin and occurrence: Metamorphic in shales and Mn-rich metamorphic rocks; rare magmatic in rhyolites and pegmatites. Needles up to 30 mm (1½ in) long come from Radoy Island, Norway. It comes also from Eden Mills, Vermont, Allen Park, Colorado, USA; Pinos Altos, Baja California, Mexico.

Piemontite

\[\text{Ca}_2(\text{AlMn}^{3+}_3)\text{Si}_3\text{O}_12(\text{OH}) \]

Properties: C - red-brown to black, crimson, red-yellow; S - white; L - vitreous to dull; D - translucent, locally opaque; DE - 3.5; H - 6; CL - good; F - uneven; M - prismatic crystals, columnar and radial aggregates, granular.

Origin and occurrence: Metamorphic in marbles and in the Alpine-type veins. Prismatic crystals up to 60 mm (2½ in) long come from Raday Island, Norway. It comes also from Eden Mills, Vermont, Allen Park, Colorado, USA; Pinos Altos, Baja California, Mexico.
Epidote, 50 mm, Knappenwand, Austria

uneven; M - tabular crystals, granular; R - usually metamict.

Origin and occurrence: Magmatic in pegmatites and granites; metamorphic in various types of metamorphic rocks, e.g. migmatites, amphibolites and gneisses. Grains, up to 70 cm (27½ in) across found in pegmatites near Bancroft, Ontario, Canada. Also occurs in Barringer Hill, Colorado; Amelia district, Virginia, USA; Arendal and Hittero, Norway; Ytterby and Riddarhyttan, Sweden; Yates mine, Quebec, Canada.

Allanite-(Ce)
(Ca,Ce,Y)ΣAlFe³⁺SiO₃(OH)

MONOCLINIC

Properties: C - black to dark brown; S - light gray; L - greasy to submetallic; D - translucent to opaque; DE = 3.9; H = 5.5-6; CL = none; F - conchoidal to uneven; M - tabular crystals, granular; R - usually metamict.

Origin and occurrence: Magmatic in pegmatites and granites; metamorphic in various types of metamorphic rocks, e.g. migmatites, amphibolites and gneisses. Grains, up to 70 cm (27½ in) across found in pegmatites near Bancroft, Ontario, Canada. Also occurs in Barringer Hill, Colorado; Amelia district, Virginia, USA; Arendal and Hittero, Norway; Ytterby and Riddarhyttan, Sweden; Yates mine, Quebec, Canada.

Allanite-(Ce), 40 mm, Vizcaya, Spain

Piemontite, 45 mm, Tadynac, Morocco

Allanite-(Ce), 40 mm, Vizcaya, Spain
Zoisite
$\text{Ca}_3\text{Al}_3\text{Si}_3\text{O}_{12}(\text{OH})$

ORTHORHOMBIC

Varieties: thulite, tanzanite

Properties:
- **C** - colorless, yellowish, green, pink, red (thulite), blue (tanzanite)
- **S** - white
- **L** - vitreous to dull
- **D** - transparent to translucent
- **DE** - 3.4
- **H** - 6.5
- **CL** - good
- **F** - uneven
- **M** - prismatic crystals, radial aggregates, granular

Origin and occurrence: Metamorphic in regionally metamorphosed Ca-rich rocks, mainly in pyroxenic gneisses, amphibolites and in marble contacts. It is known from many localities like Saualpe, Austria; Zermatt, Switzerland; Lexviken, Norway (thulite); Traversella, Italy; Alchuri, Pakistan; Merelani Hills, Arusha, Tanzania (tanzanite), where crystals up to 70 mm (2¾ in) long were found.

Application: tanzanite and thulite are cut as gemstones.
Vesuvianite
\[\text{Ca}_9\text{(Al}_2\text{Mg}_2\text{Fe})_3\text{Si}_8\text{O}_{26}\text{O}(\text{OH,F}_2)_{10}}\]
TETRAGONAL

Properties:
- **C:** brown, yellowish, green, blue, purple, colorless;
- **S:** white;
- **L:** vitreous to dull;
- **D:** transparent to translucent;
- **DE:** 3.3;
- **H:** 6-7;
- **CL:** imperfect;
- **F:** uneven to conchoidal;
- **M:** prismatic to tabular crystals, columnar aggregates with radial structure, granular, massive.

Origin and occurrence: Metamorphic and hydrothermal in contact metamorphosed Ca-rich rocks, mainly in skarns, in marble contacts, also in rodingites; rarely magmatic in alkaline rocks. It is usually associated with grossular, wollastonite and diopside. Perfect green crystals up to 180 mm (7.1 in) long and purple crystals up to 70 mm (2.7 in) long come from the Jeffrey quarry, Asbestos, Quebec, Canada. It is also known from Hazlov, Czech Republic; Crestmore, California; Franklin, New Jersey, USA; Monzoni, Italy.

Viluite
\[\text{Ca}_9\text{(Al}_2\text{Fe})_3\text{Si}_0\text{O}_{26}\text{O}(\text{OH})_{10}}\]
TETRAGONAL

Properties:
- **C:** dark green, gray-brown;
- **S:** white;
- **L:** vitreous to dull;
- **D:** transparent to translucent;
- **DE:** 3.4;
- **H:** 6;
- **CL:** imperfect;
- **F:** uneven to conchoidal;
- **M:** prismatic crystals.

Origin and occurrence: Metamorphic in serpentinized skarn, associated with grossular. Its perfect prismatic crystals up to 50 mm (2 in) long are only known from the Vilui River basin, Yakutia, Russia.
Benitoite

BaTiSijOj

TRIGONAL

Properties: C - blue, pink, white, colorless; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.6; H - 6-6.5; CL - imperfect; F - uneven to conchoidal; M - prismatic to tabular crystals, mainly with trigonal cross-section; LU - bluish.

Origin and occurrence: Hydrothermal in veins, cross-cutting serpentinites, always associated with neptunite and natrolite. Its classic locality is the Benitoite Gem mine, San Benito Co., California, USA, where it forms tabular crystals up to 40 mm (1 3/4 in) across.

Catapleiite

Na2ZrSi3O9.2H2O

HEXAGONAL

Properties: C - light yellow, yellow-brown, pink, brown, blue; S - white; L - vitreous to dull; D - transparent to opaque; DE - 2.8; H - 5-5.5; CL - good; F - uneven; M - thin tabular crystals, lamellar aggregates.

Origin and occurrence: Magmatic in nepheline syenites and their pegmatites, associated with aegirine, nepheline and microcline. Crystals up to 80 mm (3 3/4 in) across come from Mount Kukisvumchorr, Khibiny massif, Kola Peninsula, Russia. Crystals up to 50 mm (2 in) across are also known from Mont St.-Hilaire, Quebec, Canada. It also occurs in Langesundsfjord, Norway and in Los Island, Guinea.

Eudialyte

Na4(Ca,Fe,Ce,Mn)2ZrSi6O18(OH,Cl)

TRIGONAL

Properties: C - red, pink to brown; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 5-5.5; CL - imperfect; F - uneven; M - prismatic and tabular crystals, granular.

Origin and occurrence: Magmatic in nepheline syenites of their pegmatites, associated with aegirine, nepheline and microcline. Crystals up to 80 mm (3 3/4 in) across come from Mount Kukisvumchorr, Khibiny massif, Kola Peninsula, Russia. Crystals up to 50 mm (2 in) across are also known from Mont St.-Hilaire, Quebec, Canada. It also occurs in Langesundsfjord, Norway and in Los Island, Guinea.

Ferroaxinite

Ca2FeAl2Si4O15(OH)

TRICLINIC

Properties: C - brown to purple-brown, light purple; S - white; L - vitreous to dull; D - translucent.

Origin and occurrence: Magmatic in nepheline syenites and their pegmatites, associated with aegirine, nepheline and microcline. Crystals up to 80 mm (3 3/4 in) across come from Mount Kukisvumchorr, Khibiny massif, Kola Peninsula, Russia. Crystals up to 50 mm (2 in) across are also known from Mont St.-Hilaire, Quebec, Canada. It also occurs in Langesundsfjord, Norway and in Los Island, Guinea.
Eudialyte, 20 mm grain, Khibiny Massif, Kola, Russia

Parent to translucent; DE = 3.3; H = 6.5-7; CL - good; F - uneven to conchoidal; M - tabular crystals, platy aggregates, granular, massive.

Origin and occurrence: Metamorphic and hydrothermal in contacts of marbles and granites, associated with clinozoisite, prehnite, calcite and actinolite, also in the Alpine-type veins and pegmatites. Perfect tabular crystals up to 150 mm (6 in) across come from Puiva, Polar Urals, Russia. Other renowned localities are Obira, Japan; Bourg d' Oisans, France; Monte Scopi, Switzerland.

Tinzenite

Ca(Mn,Fe)₂Al₂Si₄O₁₅(OH)

Triclinic

Properties: C - yellow, orange to red; S - white; L - vitreous to dull; D - transparent to translucent; DE = 3.3; H = 6.5-7; CL - good; F - uneven to conchoidal; M - tabular crystals, platy and fibrous aggregates, granular, massive.

Origin and occurrence: Hydrothermal in the Alpine-type veins, cross-cutting a rock, rich in braunite. It comes from Tinzen, Val d'Err, Switzerland and in the Cassagna mine, Genova, Italy.
Beryl
\(\text{Be}_3\text{Al}_2\text{Si}_6\text{O}_{18} \)

HEXAGONAL

Varieties: emerald, aquamarine, heliodor, morganite, goshenite, red beryl (bixbite).

Properties: C – variable in different varieties; common beryl – mostly yellow, yellow-green, light green to white, rare blue; varieties: emerald – dark emerald-green; aquamarine – light to dark blue-green; morganite – pink; heliodor – light yellow to yellow-green; goshenite – white to colorless; red beryl B red; \(S \) – white; \(L \) – vitreous to dull; \(D \) – transparent to translucent; \(DE \) – 2.6; \(H \) – 7.5-8; CL – imperfect; \(F \) – uneven to conchoidal; \(M \) – long prismatic to tabular crystals, columnar and radial aggregates, granular, massive.

Origin and occurrence: Magmatic in pegmatites and granites; hydrothermal in greisens, in cavities in rhyolite, in quartz veins; metamorphic in mica schists. Perfect prismatic crystals of common beryl up to 9 m (29 ft 6 in) long found in the Eta mine, Keystone, South Dakota, USA. Crystals weighing up to 177 tons, come from Namivo, Alto Ligonha, Mozambique. Other localities are Pici, Brazil; Iveland, Norway; Antsirabe, Madagascar. Emerald crystals occur in mica-schists, marbles and ultrabasic rocks, associated with other Be minerals, phenakite and...
Emerald, 30 mm, Ural Mts., Russia

Aquamarine, 97 mm, Koronel Harte, Brazil

Chrysoberyl. Beautiful dark green transparent crystals are known from Malyshevo, Ural Mts., Russia; Muzo and Coscuez, Colombia; Habachtal, Austria, where the largest crystals reach up to 120 mm (4¼ in) in size. Aquamarine is mainly known from pegmatites and hydrothermal veins, commonly

Emerald, 90 mm, Muzo, Colombia

Aquamarine, 158 mm, Shingus, Pakistan
associated with tourmaline, quartz and albite. Intense blue crystals are known from many pegmatites in Minas Gerais, Brazil, where in the Marambaia mine, crystals, up to 70 cm (27 1/4 in) long and weighing up to 110 kg (242 lb) found. Very beautiful gemmy crystals over 30 cm (12 in) long recently occurred in the Medina Mine. It also come from Murzinka, Ural mountains and Adun Chilton, Siberia, Russia. It also comes from Spitzkopje, Namibia; Gilgit, Pakistan and elsewhere. Morganite is a typical mineral of granitic pegmatites, where it occurs in mainly in cavities, usually associated with color varieties of tourmaline, quartz and albite. Its tabular crystals up to 100 mm (4 in) across found in the White Queen mine, Pala, California, USA. Smaller crystals come from San Piero in Campo, Elba, Italy. Crystals up to 50 cm (20 in) across reported from several localities in Minas Gerais, Brazil. Heliodor also occurs in pegmatitic cavities, hydrothermal veins and in gneisses, commonly associated with quartz and albite. Prismatic crystals up to 200 mm (7 1/2 in) long, come from Volodarsk Volynskii, Ukraine. It is also known from Norchinsk, Siberia, Russia and several mines in Minas Gerais, Brazil. Goshenite occurs only in pegmatites. Its prismatic crystals come from Goshen, Massachusetts.
USA: San Piero in Campo, Elba, Italy. Red beryl occurs in Violet Claims, Wah Wah mountains, Utah, USA, where crystals up to 50 mm (2 in) were found.

Application: Be ore, color varieties are cut as gemstones.

Morganite, 43 mm x, San Diego Co., U.S.A.
Bazzite
\[\text{Be}_3(\text{Sc,Al})_2\text{Si}_8\text{O}_{18}\]
HEXAGONAL

Properties: C - light to intense blue; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 6.5; CL - imperfect; F - uneven to conchoidal; M - long prismatic crystals, columnar and radial aggregates.

Origin and occurrence: Hydrothermal in the Alpine-type veins and pegmatites. Crystals up to 20 mm (1/4 in) long come from Tordal, Norway. It is also known from Lago Maggiore, Italy and St. Gotthard, Switzerland.

Cordierite
\[\text{Mg}_2\text{Al}_4\text{Si}_5\text{O}_{18}\]
ORTHORHOMBIC

Varieties: iolite (gemmy blue)

Cordierite, 50 mm, Fishail Lake, Canada

Properties: C - blue, purple, gray, gray-green, gray-brown, trichroic; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.5; H - 7-7.5; CL - imperfect; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Metamorphic in migmatites and gneisses and in contact cherts; magmatic in granites and granitic pegmatites, usually associated with andalusite and sillimanite, also known from placers. It is a typical rock-forming mineral. Its prismatic crystals are very rare. Poorly developed transparent crystals up to 200 mm (7 3/4 in) long come from Naverberg, Sweden. It also occurs in Orijarvi, Finland; Kageso, Norway; Bodenmais, Germany. Gemmy pebbles are known from the vicinity of Ratnapura, Sri Lanka.

Sekaninaite
\[\text{Fe}_2\text{Al}_4\text{Si}_5\text{O}_{18}\]
ORTHORHOMBIC

Properties: C - blue, purple, strongly pleochroic; S
Dravite. 27 mm. Gujarkot, Nepal

- white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 7-7.5; CL - imperfect; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites and some granites, associated with andalusite and tourmaline; metamorphic in gneisses and migmatites. Conical, imperfect crystals, up to 70 cm (27 3/4 in) long typically come from Dolni Bory, Czech Republic: also known from San Piero in Campo, Elba, Italy. Crystals up to 100 mm (3 3/4 in) long come from Gouvèrner, New York, USA. Crystals up to 150 mm (6 in) across found in Yinnietharra, Western Australia, Australia. Crystals up to 50 mm (2 in) long were recently found in Gujarkot, Nepal. Application: transparent crystals are cut as gemstones.

Dravite

TOURMALINE GROUP
NaMg₃Al₆(BO₃)₃Si₆O₁₈(OH)₄

TRIGONAL

Properties: C - light to dark black-brown, blue, colorless, commonly pleochroic; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.0; H - 7-7.5; CL - none; F - uneven to conchoidal; M - long to short prismatic crystals, columnar to acicular aggregates, granular. Origin and occurrence: Metamorphic in migmatites, gneisses, mica schists, marbles and in contact metasomatic rocks; magmatic in some granitic pegmatites; hydrothermal in quartz veins and ore veins, also known from placers. Brown to dark brown perfect crystals up to 200 mm (7 3/4 in) long come from mica schists near Dravograd, Slovenia. It is also known from marbles in Gouverneur, New York, USA. Crystals up to 150 mm (6 in) across found in Yinnietharra, Western Australia, Australia. Crystals up to 50 mm (2 in) long were recently found in Gujarkot, Nepal. Application: transparent crystals are cut as gemstones.

Buergerite, 12 mm x, San Luis Potosi, Mexico

- white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 7-7.5; CL - imperfect; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites and some granites, associated with andalusite and tourmaline; metamorphic in gneisses and migmatites. Conical, imperfect crystals, up to 70 cm (27 3/4 in) long typically come from Dolni Bory, Czech Republic: also known from San Piero in Campo, Elba, Italy. Crystals up to 100 mm (3 3/4 in) long come from Gouvèrner, New York, USA. Crystals up to 150 mm (6 in) across found in Yinnietharra, Western Australia, Australia. Crystals up to 50 mm (2 in) long were recently found in Gujarkot, Nepal. Application: transparent crystals are cut as gemstones.

Buergerite

TOURMALINE GROUP
NaFe³⁺₃Al₆(BO₃)₃Si₆O₁₈(F)

TRIGONAL

Properties: C - black, strongly pleochroic; S - yellow-brown; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 7; CL - none; F - uneven to conchoidal; M B prismatic crystals, granular. Origin and occurrence: Hydrothermal in rhyolites. Its black crystals, up to 40 mm (1 9/16 in) long, are known from Mexquitic, San Luis Potosi, Mexico.
Schorl
TOURMALINE GROUP
NaFe$_3$Al$_6$(BO$_3$)$_3$Si$_6$O$_{18}$(OH)$_4$

<table>
<thead>
<tr>
<th>Properties</th>
<th>C</th>
<th>S</th>
<th>L</th>
<th>D</th>
<th>DE</th>
<th>H</th>
<th>CL</th>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>black, black-brown, blue-black, strongly pleochroic</td>
<td>white</td>
<td>vitreous to dull</td>
<td>translucent to opaque</td>
<td>3.3</td>
<td>7-7.5</td>
<td>none</td>
<td>uneven to conchoidal</td>
<td>long to short prismatic crystals, columnar to acicular aggregates, granular, massive</td>
</tr>
</tbody>
</table>

Origin and occurrence: Magmatic in granites and granitic pegmatites; hydrothermal in greisens, in quartz and ore veins; metamorphic in migmatites, gneisses, mica schists and tourmalinites; also known from placers. It is usually associated with muscovite, quartz and albite. Perfect black crystals come from many pegmatitic localities.
Its long prismatic crystals, up to 5 m long, come from Arendal, Norway. Very good crystals are also known from Kaatiala, Finland; Dolni Bory, Czech Republic; Conselheiro Pena and Galileia, Minas Gerais, Brazil.

Povondraite
TOURMALINE GROUP
NaFe$_3^3$Mg$_2$Fe$_3^2$(BO$_3$)$_3$Si$_6$O$_{18}$(OH)$_4$

<table>
<thead>
<tr>
<th>Properties</th>
<th>C</th>
<th>S</th>
<th>L</th>
<th>D</th>
<th>DE</th>
<th>H</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>black</td>
<td>gray</td>
<td>vitreous to dull</td>
<td>translucent to opaque</td>
<td>3.3</td>
<td>7</td>
<td>none</td>
</tr>
</tbody>
</table>

Povondraite. 60 mm. Alto Chapare, Bolivia
Elbaite, 115 mm. Tourmaline Queen Mine, U.S.A.

none; F = uneven to conchoidal; M = short prismatic crystals, granular.

Origin and occurrence: Hydrothermal along the cracks in metamorphosed evaporites. Its black crystals up to 10 mm (¾ in) long typically come from Alto Chapare, Cochabamba, Bolivia.

Elbaite

TOURMALINE GROUP
Na(Li,5Al1.5)Al6(BO3)3Si6O18(OH)2F

TRIGONAL...

Varieties: rubellite, verdelite, indicolite, achatite

Properties: C = varies in different varieties, rubellite - pink to red; verdelite - various hues of green; indicolite - blue; achatite - colorless, other colors include yellow, brown and black; S = white; L = vitreous to dull; D = transparent to translucent; DE = 3.0; H = 7; CL = none; F = uneven to conchoidal; M = prismatic crystals, columnar aggregates, granular, massive.

Origin and occurrence: Almost only magmatic and hydrothermal in granitic pegmatites, typically associated with lepidolite and albite; also in placers. Its crystals are mostly known from pegmatite cavities.
ties in many localities. Rubellite crystal called 'The Rocket' (109 cm/43½ in long) was found in the Jonas mine, Minas Gerais, Brazil. Rubellite crystals up to 40 cm (15½ in) long come from Alto Ligonha district, Mozambique. Rubellite crystals up to 250 mm (9¾ in) long occurred in the Stewart Lithia, Tourmaline King and Tourmaline Queen mines, Pala, California, USA. Verdelite crystal 270 mm (10½ in) long, is known from the Dunton mine, Newry, Maine, USA. Other important localities include San Piero in Campo, Elba, Italy; Malkhan, Transbaikalia, Russia; Rozna, Czech Republic; Uto, Sweden; Gilgit, Pakistan; Paprok, Afghanistan. Application: commonly used as a gemstone.

Uvite

TOURMALINE GROUP

CaMgAl3(BO3)3Si6O18(OH,F)4

TRIGONAL

Properties: C - gray, black, brown, green, red, pleochroic; S - white; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 7-7.5; CL - none; F - uneven to conchoidal; M - long to short prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Metamorphic in Ca-rich rocks, marbles, skarns; magmatic in some pegmatites; hydrothermal in ore veins. Perfect green and red crystals, up to 30 mm (1¼ in) across, occur in Brumado, Bahia, Brazil. It is also known from Gouverneur and Pierrepont, New York, USA.

Liddicoatite

TOURMALINE GROUP

Ca(Li2Al)Al6(BO3)3Si6O18(OH,F)F

TRIGONAL

Varieties: rubellite, verdelite

Properties: C - varies in different varieties, mainly pink, green, green-brown to yellow-brown; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.1; H - 7; CL - none; F - uneven to conchoidal; M - prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in granitic peg-
Verdelite, 24 mm, Gillette Quarry, U.S.A.

Indigolite, 32 mm, Esmeralda Mine, Mesa Grande, U.S.A.

Mattites in association with lepidolite, spodumene and albite. Its perfect red and green crystals up to 250 mm (9.8 in) long come from pegmatite cavities in many localities in Madagascar, e.g. Sahatany and Anjanabonoina. It is also known from Bizen, Czech Republic.

Application: cut as a gemstone.
Foitite

TOURMALINE GROUP

\[\text{Fe}_3\text{Al}_6\text{(BO}_3\text{)}_2\text{Si}_6\text{O}_{18}(\text{OH})_4 \]

TRIGONAL

Properties:
- **C** - black to black-purple; **S** - white; **L** - vitreous to dull; **D** - translucent to opaque; **DE** - 3.3; **H** - 7; **CL** - none; **F** - uneven to conchoidal; **M** - prismatic crystals, acicular aggregates.

Origin and occurrence:
Magmatic in granitic pegmatites and granites; hydrothermal in pegmatic cavities. Foitite typically forms black tips of elbaite crystals (moors heads) in Dobra Voda, Czech Republic; San Piero in Campo, Elba, Italy; White Queen mine, Pala, California, USA. It occurs together with schorl in some granitic pegmatites, like Rozna, Czech Republic.

Rossmanite

TOURMALINE GROUP

\[\text{LiAl}_2\text{Al}_6\text{(BO}_3\text{)}_3\text{Si}_6\text{O}_{18}(\text{OH})_4 \]

TRIGONAL

Properties:
- **C** - pink; **S** - white; **L** - vitreous to dull; **D** - transparent to translucent; **DE** - 3.1; **H** - 7; **CL** - none; **F** - uneven to conchoidal; **M** - prismatic crystals, columnar aggregates.

Origin and occurrence:
Magmatic in granitic pegmatites and granites; hydrothermal in pegmatic cavities. Prismatic crystals, up to 20 mm (~7 in) long, were found in massive lepidolite in Rozna, also in Lastovieky, Czech Republic.

Dioptase

TOURMALINE GROUP

\[\text{Cu}_6\text{Si}_4\text{O}_{18} \cdot \text{6 H}_2\text{O} \]

TRIGONAL

Properties:
- **C** - emerald-green to blue-green; **S** - light blue-green; **L** - vitreous to dull; **D** - transparent to translucent; **DE** - 3.3; **H** - 5; **CL** - good; **F** - uneven to conchoidal; **M** - long to short prismatic crystals, granular.

Origin and occurrence:
Secondary in the oxidation zone of Cu deposits, associated with other secondary Cu minerals. Beautiful crystals up to 50 mm (2 in) across occur in Tsumeb, Namibia; Altyn Tyube, Kazakhstan; Rennville, Congo. It also comes from the Mammoth mine, Tiger, Arizona, USA.

Milarite

TOURMALINE GROUP

\[\text{KCa}_2\text{AlBe}_2\text{Si}_3\text{O}_{10} \cdot \text{H}_2\text{O} \]

HEXAGONAL

Properties:
- **C** - colorless, white, gray, light green; **S** - white; **L** - vitreous to dull; **D** - transparent to translucent; **DE** - 2.5; **H** - 5-6; **CL** - none; **F** - uneven to conchoidal; **M** - long prismatic to acicular crystals, granular.

Origin and occurrence:
Hydrothermal in the Alpine-type veins, in pegmatites and hydrothermal veins, associated with adularia. Crystals up to 40 mm (1.5 in) long come from Jaguaquara, Minas Gerais, Brazil. It was also found in St. Gotthard, Switzerland; Klein Spitzkopje, Namibia; Valencia mine, Guanajuato, Mexico.

Foitite, 20 mm x, Dobra Voda, Czech Republic

Rossmanite, 10 mm x, Lastovieky, Czech Republic
Dioptase, 40 mm, Mindouli, Zair

Sugilite

\[
\text{KNa}_2(\text{Fe, Mn, Al})_2\text{Li}_2\text{Si}_3\text{O}_{12}
\]

HEXAGONAL

Properties: C - purple; S - white; L - vitreous to dull; D - transparent to translucent; DF: - 2.7; H - 6-6.5; CL - none; F - uneven to conchoidal; M - long prismatic to acicular crystals, granular.

Origin and occurrence: Hydrothermal in alkaline syenites, associated with pectolite, albite and aegirine. It occurs in Iwagi Island, Japan and Hotazel, South Africa. **Application:** cut and polished as a gemstone and decorative stone.

Milarite, 22 mm, Jaguaracu, Brazil

Sugilite, 40 mm, Hotazel, South Africa
Enstatite

PYROXENE GROUP

\[\text{Mg}_2\text{Si}_2\text{O}_6 \]

ORTHORHOMBIC

Varieties: bronzite

Properties:
- \(C \) - colorless, gray, yellowish, greenish, brown (bronzite);
- \(S \) - white;
- \(L \) - vitreous to dull;
- \(D \) - transparent to opaque;
- \(DE \) - 3.2;
- \(H \) - 5-6;
- \(CL \) - good;
- \(F \) - uneven to conchoidal;
- \(M \) - prismatic crystals, granular.

Origin and occurrence: Magmatic in ultrabasic rocks, gabbros, peridotites and in meteorites; metamorphic in marbles, associated mainly with olivine and pyrope. Known from Bamle, Norway in crystals up to 50 cm (20 in) long. It was originally described from Ruda nad Moravou, Czech Republic. Gemmy crystals up to 20 mm (\(\frac{3}{4} \) in) long occur in Brumado, Bahia, Brazil.

Diopside

PYROXENE GROUP

\[\text{CaMgSi}_2\text{O}_6 \]

MONOCLINIC

Varieties: chrome diopside, fassaite, jeffersonite

Properties:
- \(C \) - light green, dark green (chrome diopside), colorless, white, gray, brown, rare blue;
- \(S \) - white;
- \(L \) - vitreous to dull;
- \(D \) - transparent to translucent;
- \(DE \) - 3.3;
- \(H \) - 5.5-6.5;
- \(CL \) - good;
- \(F \) - uneven to conchoidal;
- \(M \) - long to short prismatic crystals, granular.

Origin and occurrence: Metamorphic in Ca-rich rocks, skarns, pyroxene gneisses, marbles; magmatic in basic igneous rocks, pegmatites and meteorites; hydrothermal in the Alpine-type veins. Fassaite occurs in skarns, chrome diopside in metamorphic deposits of Cu and Cr; jeffersonite in metamorphic deposits of Mn and Zn. Diopside is a typical rock-forming mineral.
associated with plagioclase, grossular and epidote. Well formed crystals are relatively rare. Jeffersonite forms prismatic crystals up to 250 mm (9\(\frac{3}{4}\) in) long in Franklin, New Jersey, USA. Crystals in Corrego Setuba, Minas Gerais, Brazil reach up to 30 cm (12 in). Other typical localities are Zillertal, Austria; Nordmarken, Sweden; Orford mine, Quebec, Canada. Fassait is known from Val di Fassa, Italy. Chrome diopside crystals reach up to 100 mm (4 in) in Outokumpu, Finland and gem rough recently found in Inagli, Yakutia, Russia.

Hedenbergite

PYROXENE GROUP

\[\text{CaFeSi}_2\text{O}_6\]

MONOCLINIC

Properties: C - dark green, brown-green, brown to black; S - white to gray; L - vitreous to dull; D - transparent to translucent; DE - 3.6; H - 6; CL - good; F - uneven to conchoidal; M - long to short prismatic crystals, granular.

Origin and occurrence: Metamorphic in Ca-rich rocks, like Fe-skarns and pyroxene gneisses; magmatic in some granites and syenites, associated with magnetite, grossular and epidote. Crystals are relatively rare, reaching up to 50 mm (2 in) from Dalnegorsk, Russia and Franklin, New Jersey, USA. Also occurs in Nordmarken, Sweden. Large lamellar aggregates come from skarns in Rio Marina, Elba, Italy.

Augite

PYROXENE GROUP

\[(\text{Ca,Mg,Fe,Al})(\text{Si,Al})_2\text{O}_6\]

MONOCLINIC

Properties: C - dark brown to black; S - gray-green; L - vitreous to dull; D - translucent to opaque; DE - 3.6; H - 6; CL - good; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Magmatic in basic rocks (basalts, gabbros, diabases and their tuffs); rare metamorphic in skarns. It is a typical rock-forming mineral, known from many localities. Well formed crystals up to 150 mm (6 in) across occur mainly in volcanic rocks, such as near Lake Clear, Ontario, Canada. Also known from Laacher See, Germany; Lukov and Pa_kapole, Czech Republic, in crystals, up to 50 mm (2 in) in size.
Omphacite
PYROXENE GROUP
(Ca,Na)(Mg,Fe\(^{2+},Fe^{3+},Al\))Si\(^2\)O\(^6\)

MONOCLINIC

Properties: C - green to dark green; S - gray-white; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 5-6; CL - good; F - uneven to conchoidal; M - short prismatic crystals, acicular aggregates, granular.

Origin and occurrence: Metamorphic in ultrabasic and basic rocks, originated under high-temperature, usually associated with pyrope, diopside and kyanite. It occurs in eclogites and granulites in Rubinberg, Germany; Headsburg, California, USA and elsewhere.

Jadeite
(Pyroxene Group)

Properties: C - green to dark green; S - gray-white; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 5-6; CL - good; F - uneven to conchoidal; M - short prismatic crystals, acicular aggregates, granular.

Origin and occurrence: Metamorphic in ultrabasic and basic rocks, originated under high-temperature, usually associated with pyrope, diopside and kyanite. It occurs in eclogites and granulites in Rubinberg, Germany; Headsburg, California, USA and elsewhere.
Jadeite
PYROXENE GROUP
NaAlSi$_2$O$_6$

MONOCLINIC ● ●

Varieties: nephrite

Properties: C - white, lavender to gray, in aggregates also light green (nephrite); S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.2; H - 6; CL - good; F - uneven to conchoidal; M - prismatic crystals, acicular aggregates, granular.

Origin and occurrence: Exclusively metamorphic in strongly metamorphosed rocks; also in placers. Blocks, weighing several tons, are known from Ben Sur, California, USA. It also come from Tawmaw, Burma; New Zealand; Tibet and elsewhere.

Application: as a material for carvings and decorative purposes.

Aegirine
PYROXENE GROUP
NaFe$_{3+}$Si$_2$O$_6$

MONOCLINIC ● ● ●

Properties: C - dark green to black-green; S - light yellow-gray; L - vitreous to dull; D - translucent to opaque; DE - 3.6; H - 6; CL - good; F - uneven to conchoidal; M - long prismatic to acicular crystals, acicular aggregates.

Origin and occurrence: Magmatic, mainly in alkaline magmatic rocks (syenites, carbonatites, alkaline granites and their pegmatites); rare hydrothermal in sediments. Well formed prismatic crystals up to 150 mm (6 in) long come from Mount Malosa, Malawi. Crystals up to 30 cm (12 in) occur in Langensundsfjord, Norway. Other localities are Mount Karnasurt, Lovozero massif, Kola Peninsula, Russia and Mont St.-Hilaire, Quebec, Canada.

Aegirine, 77 mm, Mt. Malosa, Malawi

Nephrite, 60 mm, Jordanow, Poland
Spodumene

PYROXENE GROUP

Li$_2$Al$_2$Si$_3$O$_8$

MONOCLINIC

Varieties: kunzite, hiddenite, triphane

Properties: C – white, gray, yellowish (triphane), green (hiddenite), pink to purple (kunzite); S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 6.5–7.5; CL – good; F – uneven to conchoidal; M – long to short prismatic crystals, cleavable aggregates, granular; LU – orange.

Origin and occurrence: Magmatic in granitic pegmatites; hydrothermal in pegmatite cavities. It is known from many localities. Its poorly developed crystals up to 6 m (20 ft) long occur in the Eta mine, Keystone, South Dakota and in Kings Mountain, North Carolina, USA. Transparent kunzite crystals up to 40 cm (15% in) long found in the Pala Chief mine, Pala, California, USA. Cracked kunzite crystals, up to 1 m (39% in) long known from Araquai, Minas Gerais, Brazil. Hiddenite occurs in crystals up to 250 mm (9% in) long in Replendor, Minas Gerais, Brazil. It also comes from the Adams property, North Carolina, USA.

Application: raw material for ceramics, kunzite and hiddenite are cut as gemstones.

Hiddenite

Kunzite

Spodumene, 52 mm, Kunar, Afghanistan

Hiddenite, 35 mm, Adams Property, U.S.A.

Kunzite, 118 mm, Nuristan, Afghanistan

Spodumene
Carpholite
MnAl₂Si₂O₈(OH)₄
ORTHORHOMBIC

Properties: C - various hues of yellow; S - white; L - vitreous to dull; D - translucent; DE - 3.0; H - 5-5.5; CL - good; F - uneven to conchoidal; M - acicular crystals and their aggregates.

Origin and occurrence: Hydrothermal in veins, cross-cutting greisens, associated with fluorite, quartz and cassiterite; also in metamorphic rocks. It was described from Horni Slavkov, Czech Republic, where it forms acicular crystals up to 10 mm (3/4 in) long and radial aggregates. It is also known from Meuville, Belgium and Wippra, Germany.

Lorenzenite
Na₂Ti₂Si₂O₉
ORTHORHOMBIC

Properties: C - brown to black; S - yellowish; L - vitreous to dull; D - translucent to opaque; DE - 3.4; H - 6; CL - good; F - uneven to conchoidal; M - prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in alkaline syenites and their pegmatites, associated with astrophyllite, nepheline and aegirine. Crystals up to 80 mm (3/4 in) long come from Mount Flora, Lovozero massif, Kola Peninsula, Russia. Other localities are Karsarsarsuk, Greenland and Mont St.-Hilaire, Quebec, Canada.

Ajoite
(K,Na)Cu₇Al₇Si₉O₂₄(OH)₆·3H₂O
TRICLINIC

Properties: C - blue-green; S - light green; L - vitreous to dull; D - translucent to opaque; DE - 3.0; H - not determined; CL - not determined; F - uneven to conchoidal; M - prismatic crystals, massive.

Origin and occurrence: Secondary in Cu deposits, associated with shattuckite. It occurs rarely as small crystals in the New Cornelia mine, Ajo, Arizona, USA. It is also known as inclusions in quartz crystals in the Messina mine, Transvaal, South Africa.

Ajoite, 60 mm, Ajo, U.S.A.
Holmquistite
AMPHIBOLE GROUP
Li₂Mg₃Si₆O₂₂(OH,F)₂
ORTHORHOMBIC

Properties: C - blue, purple, gray, black; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.0; H - 5.5-6; CL - good; F - uneven to conchoidal; M - acicular and prismatic crystals, fibrous aggregates, granular.

Origin and occurrence: Hydrothermal at the contacts between complex Li-bearing pegmatites and amphibolites, sometimes associated with biotite. It occurs in Greenbushes, Western Australia, Australia where its fibers reach up to 180 mm (7 in) in length. It is also known from Uto, Sweden; Manono, Zaire and Brandbrucken, Austria.

Manganogedrite
AMPHIBOLE GROUP
Mn₂Fe₅Si₈O₂₀(OH)₂
MONOCLINIC

Properties: C - gray, dark green, brown, greenish; S - white; L - vitreous to dull; D - translucent to opaque; DE - 3.5; H - 5-6; CL - good; F - uneven to conchoidal; M - columnar, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed Mn rich rocks, associated with chlorite and magnetite. It comes from Dannemora, Sweden and elsewhere.

Tremolite, 37 mm, Maricopa Co., Arizona, U.S.A.

Tremolite

AMPHIBOLE GROUP

\[
\text{Ca}_2\text{Mg}_5\text{Si}_8\text{O}_{20}(\text{OH})_2
\]

MONOCLINIC

Properties: C - white, gray, greenish, green, brown, pink; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.9; H - 5-6; CL - good; F - uneven to conchoidal; M - columnar, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed rocks, dolomites and ultrabasic rocks; hydrothermal in the Alpine-type veins, typically associated with diopside, talc, dolomite and calcite. It is a typical rock-forming mineral, known from many localities. Prismatic crystals up to 40 cm (15¾ in) long come from Brumado, Bahia, Brazil. It occurs also in Campo-lungo, Switzerland; Zillertal, Austria; Gouverneur, New York, USA and elsewhere.

Actinolite, 30 mm xx, Austria

Actinolite

AMPHIBOLE GROUP

\[
\text{NaCa}_2(\text{Mg,Fe})_5\text{Si}_7\text{Al}_2\text{O}_{22}(\text{OH})_2
\]

MONOCLINIC

Properties: C - light green to almost black; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.2; H - 5-6; CL - good; F - uneven to conchoidal; M - prismatic crystals, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed basic rocks and marbles; magmatic in diorites and gabbros. Typical rock-forming mineral, its crystals up to 40 mm (1¾ in) long come from Edenville, New York, USA and Bancroft, Ontario, Canada.

Edenite, 48 mm, Wilberforce, Canada

Edenite

AMPHIBOLE GROUP

\[
\text{NaCa}_2(\text{Mg,Fe})_5\text{Si}_7\text{Al}_2\text{O}_{22}(\text{OH})_2
\]

MONOCLINIC

Properties: C - white, gray to dark green; S - white; L - vitreous to dull; D - transparent, translucent to opaque; DE - 3.1; H - 5-6; CL - good; F - uneven to conchoidal; M - prismatic crystals, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed rocks, also in dolomites and some basic rocks (amphibolites, shales). It is a typical rock-forming mineral, associated with anthophyllite, chlorite, talc, dolomite and calcite. It is known from many localities where it forms columnar aggregates up to 250 mm (9¾ in) long, as in Knappenwand and Zillertal, Austria; Val Malenco, Italy; Brumado, Bahia, Brazil and Sobotin, Czech Republic.
Pargasite

AMPHIBOLE GROUP

\[\text{Na}_2\text{Ca}_2(\text{Mg,Fe})_4\text{Al}_2\text{Si}_6\text{O}_{22} (\text{OH})_2 \]

MONOCLINIC • • • •

Properties:
- C - light brown, green-blue, brown to black-brown;
- S - white;
- L - vitreous to dull;
- D - transparent to translucent;
- DE - 3.1;
- H - 5-6;
- CL - good;
- F - uneven to conchoidal;
- M - prismatic crystals, granular, massive.

Origin and occurrence:
Metamorphic in regionally metamorphosed basic rocks, marbles and skarns; magmatic in diorites and gabbros; typical rock-forming mineral. Crystals up to 80 mm (3 ½ in) across come from the Jensen quarry, Riverside, California, USA; Pargas, Finland; Hunza, Pakistan.

Common Amphibole

AMPHIBOLE GROUP

\[(\text{Ca,Na})_2(\text{Mg,Fe,AI})_5(\text{Si,AI})_8\text{O}_{22} (\text{OH},\text{F})_2 \]

MONOCLINIC • • • •

Properties:
- C - dark green, brown to black;
- S - gray;
- L - vitreous to dull;
- D - translucent to opaque;
- DE - 3.4;
- H - 5-6;
- CL - good;
- F - uneven to conchoidal;
- M - short prismatic crystals, columnar aggregates, granular.

Origin and occurrence:
Metamorphic in basic rocks, as amphibolites and shales; magmatic in some igneous rocks, as syenites, diorites, andesites and basalts. Typical rock-forming mineral, known from many localities. Large crystals up to 1 m (3 ½ in) long come from Silver Crater, Ontario, Canada. It is also known from Zillertal, Austria; Lukov, Czech Republic and elsewhere.

Richterite

AMPHIBOLE GROUP

\[\text{Na}_2\text{Ca}(\text{Mg,Fe,AI})_3(\text{Si,AI})_8\text{O}_{22} (\text{OH},\text{F})_2 \]

MONOCLINIC • • • •

Properties:
- C - brown, yellow, dark red, dark green;
- S - gray;
- L - vitreous to dull;
- D - transparent to translucent;
- DE - 3.1;
- H - 5-6;
- CL - good;
- F - uneven to conchoidal;
- M - long prismatic crystals, columnar aggregates, granular.

Origin and occurrence:
Magmatic in alkaline rocks, as trachytes and alkaline granites; rare metamorphic in some metamorphosed rocks, as skarns and marbles. Crystals up to 100 mm (4 in) long come from Wilberforce, Ontario, Canada and Langban, Sweden.
Riebeckite

AMPHIBOLE GROUP

\[\text{Na}(\text{Fe}^{2+}, \text{Mg})_3 \text{Fe}^{3+}_2 \text{Si}_8 \text{O}_{22}(\text{OH})_2 \]

MONOCLINIC

Varieties: crocidolite (tiger's eye)

Properties:
- C: dark blue to black, crocidolite - gray-blue;
- S: white;
- L: vitreous to dull;
- D: translucent to opaque;
- DE: 3.4;
- H: 5;
- CL: perfect;
- F: uneven to conchoidal;
- M: long prismatic crystals, acicular to fibrous aggregates.

Origin and occurrence: Magmatic in alkaline rocks, as granites, syenites and rhyolites; metamorphic in regionally metamorphosed Fe rich shales. Large crystals up to 150 mm (6 in) long come from Khangay, Mongolia. Crocidolite is famous from Griqualand, South Africa.

Wollastonite

TRICLINIC

Properties:
- C: white, gray, light greenish, pink;
- S: white;
- L: vitreous to dull;
- D: transparent to translucent;
- DE: 3.0;
- H: 4.5-5;
- CL: good;
- F: uneven to conchoidal;
- M: tabular to short prismatic crystals, columnar and radial aggregates, granular;
- LU: orange.

Origin and occurrence: Metamorphic mainly in contact metamorphosed rocks, as marbles, skarns, less common in pyroxene gneisses and quartzites, associated with grossular, diopside and vesuvianite. Columnar and acicular aggregates up to 180 mm (7 3/4 in) long occur in the Strickland quarry, Connecticut, USA. It also come from Crestmore, California, USA; Ciclova, Romania and Zulova, Czech Republic. Short prismatic crystals up to 30 cm (12 in) across are known from the Santa Fe mine, Chiapas, Mexico.
Buslamite, 20 mm, Broken Hill, Australia

Buslamite

\[(\text{Mn,Ca})_3\text{Si}_3\text{O}_9\]

TRICLINIC

Properties:
- **C:** pink to red-brown; **S:** white; **L:** vitreous to dull; **D:** transparent to translucent; **DE:** 3.4; **H:** 5.5-6.5; **CL:** good; **F:** uneven to conchoidal; **M:** tabular crystals, acicular aggregates, massive.

Origin and occurrence: Metamorphic or hydrothermal in Mn rich metamorphic rocks or skarns. It is associated with rhodonite and other Mn silicates in Franklin, New Jersey, USA; Langban, Sweden; Broken Hill, New South Wales, Australia.

Pectolite, 70 mm, Zelechovské údolí, Czech Republic

Pectolite

\[\text{Ca}_2\text{Na}_3\text{Si}_5\text{O}_{10}(\text{OH})\]

TRICLINIC

Properties:
- **C:** white, pinkish; **S:** white; **L:** vitreous to dull; **D:** transparent to translucent; **DE:** 2.9; **H:** 4.5-5; **CL:** good; **F:** uneven to conchoidal; **M:** tabular and prismatic crystals, granular.

Origin and occurrence: Hydrothermal in cavities of igneous rocks (alkaline syenite, carbonatite) together with aegirine and analcite. Perfect pink crystals up to 200 mm (7¼ in) long come from Mont St.-Hilaire, Canada.

Serandite, 25 mm, Mont St.-Hilaire, Canada

Serandite

\[\text{Mn}_2\text{Na}_3\text{Si}_5\text{O}_{10}(\text{OH})\]

TRICLINIC

Properties:
- **C:** pink, red; **S:** white; **L:** vitreous to dull; **D:** transparent to translucent; **DE:** 2.9; **H:** 4.5-5; **CL:** good; **F:** uneven to conchoidal; **M:** tabular and prismatic crystals, granular.

Origin and occurrence: Hydrothermal in cavities of igneous rocks (alkaline syenite, carbonatite) together with aegirine and analcite. Perfect pink crystals up to 200 mm (7¼ in) long come from Mont St.-Hilaire, Canada.
Hilaire, Quebec, Canada; crystals up to 60 mm (2¼ in) long found in the Yubilenaya dike, Mount Karnasurt, Lovozero massif, Kola Peninsula, Russia.

Charoite

\[(K, Sr, Ba)(Ca, Na)_2(Si, Al)_4O_{10}(OH, F)\]

TRICLINIC

Properties: C – purple; S – white; L – vitreous to dull; D – translucent to opaque; DE – 2.6; H – 5-6; CL – good; F – uneven; M – fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in alkaline igneous rocks, associated with aegirine and nepheline. Rich aggregates occur in Sirenevyi Kamen, Chara river basin, Murun massif, Yakutia, Russia.

Application: cut and polished as decorative stone.

Agrellite

\[NaCa_2Si_4O_{10}F\]

TRICLINIC

Properties: C – gray-white to greenish; S – white; L – vitreous, dull to pearly; D – transparent to translucent; DE – 2.9; H – 5.5; CL – good; F – uneven; M – long prismatic crystals, granular.

Origin and occurrence: Metamorphic in alkaline gneisses. It occurs as prismatic crystals up to 100 mm (4 in) long in the Kipawa river basin, Quebec, Canada.

Okenite

\[CaSi_2O_4(OH)_2 \cdot H_2O\]

TRICLINIC

Properties: C – white, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.3; H – 4.5-5; CL – good; F – uneven to conchoidal; M – blade-shaped crystals, acicular crystals and their spherical aggregates.

Origin and occurrence: Hydrothermal in basalt cavities together with zeolites. Rich acicular spherical aggregates up to 80 mm (3¼ in) in diameter come from basalt cavities in the vicinity of Poona, India; also known from Faeroe Islands.
Xonolite

Monoclinic

Properties:
C - white, pinkish, gray; S - white; L - vitreous, dull to pearly; D - transparent to translucent; DE - 2.7; H - 6.5; CL - good; F - uneven to conchoidal; M - acicular to fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in cavities of basic and ultrabasic rocks and in the Alpine-type veins, associated with calcite and zeolites; rare metamorphic in skarns and in contact metamorphosed marbles. It comes from Tetela de Xonotla, Puebla, Mexico; Crestmore, California, USA; Mihara mine, Japan. It is also found in Stare Ransko, Czech Republic.

Elpidite

Orthorhombic

Properties:
B - colorless, yellowish, red; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.6; H - 5.5-6.5; CL - good; F - uneven to conchoidal; M - long prismatic crystals, fibrous aggregates.

Origin and occurrence: Hydrothermal in albitized parts of alkaline pegmatites, associated with albite and aegirine. Perfect crystals up to 30 cm (12 in) long come from Tarbagatay, Kazakhstan. Crystals up to 200 mm (7.9 in) long found at Mont St.-Hilaire, Quebec, Canada. Also known from Khan Bogdo, Gobi desert, Mongolia; Umbozero mine on Mount Alluaiv, Lovozero massif, Kola Peninsula, Russia.

Rhodonite

Monoclinic

Properties:
C - red, pink, white; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 2.7; H - 6.5; CL - good; F - uneven to conchoidal; M - radiating to fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in cavities of basic and ultrabasic rocks and in the Alpine-type veins, associated with calcite and zeolites; rare metamorphic in skarns and in contact metamorphosed marbles. It comes from Tetela de Xonotla, Puebla, Mexico; Crestmore, California, USA; Mihara mine, Japan. It is also found in Stare Ransko, Czech Republic.
Rhodonite, 70 mm, Maloye Sedelnikovo, Ural Mts., Russia

Rodonite

CaMn$_4$Si$_3$O$_9$

TRICLINIC

Properties: C - pink, red, red-brown, gray; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.7; H - 5.5-6.5; CL - good; F - uneven to conchoidal; M - tabular crystals, granular, massive.

Origin and occurrence: Metamorphic in Mn-rich rocks, hydrothermal in ore veins, associated with spessartine and Mn oxides. Perfect crystals up to 200 mm (7.8 in) long come from Franklin, New Jersey, USA; also from Broken Hill, New South Wales, Australia. Granular and massive aggregates occur in Langban, Sweden and in Maloye Sidelnikovo, Ural mountains, Russia.

Application: cut and polished as a decorative stone.

Babingtonite

Ca$_2$Fe$_2^+$Fe$_3^+$Si$_3$O$_{14}$(OH)

TRICLINIC

Properties: C - green-black to black-brown; S - green-gray; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 5-6; CL - good; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Hydrothermal along the cracks in rocks, associated with prehnite, adularia and epidote. Well-formed crystals about 20 mm (0.78 in) across are known from Arendal, Norway. Other localities are Westfield, Massachusetts, USA; Baveno, Italy.

Babingtonite, 5 mm x, Mumbai, India
Kinoite
\(\text{Ca}_2\text{Cu}_3\text{Si}_3\text{O}_9(\text{OH})_4 \)
MONOCLINIC

Properties: C – blue; S – light blue; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5; CL B perfect; F – uneven to conchoidal; M – prismatic crystals, granular.

Origin and occurrence: Hydrothermal along cracks in rocks, associated with apophyllite and copper. Small crystals were found in the Christmas mine, Santa Rita mountains, Arizona, also in the Kearsarge vein, Keweenaw Peninsula, Michigan, USA.

Inesite
\(\text{Ca}_2\text{Mn}_7\text{Si}_{10}\text{O}_{28}(\text{OH})_2 \cdot 5\text{H}_2\text{O} \)
TRICLINIC

Properties: C – pink, brown; S – white; L – vitreous to dull; D – translucent; DE – 3.0; H – 5.5; CL – good; F – uneven to conchoidal; M – short prismatic and tabular crystals, columnar and radial aggregates, granular.

Origin and occurrence: Hydrothermal in ore veins, associated with rhodochrosite, rhodonite and calcite. Rich aggregates and well-formed crystals about 10 mm (1/4 in) across found in Langban, Sweden; also in Hale Creek, California, USA; Broken Hill. New South Wales, Australia. Its spherical aggregates up to 30 mm (1½ in) in diameter are known from the Wessels mine, Kuruman, South Africa.

Neptunite
\(\text{KNa}_2\text{LiFe}_2\text{Ti}_2\text{Si}_9\text{O}_{22} \)
MONOCLINIC

Properties: C – dark brown to black; S – red-brown; L – vitreous to submetallic; D – translucent to opaque; DE – 3.2; H – 5-6; CL – good; F – uneven to conchoidal; M – long prismatic crystals, granular.

Origin and occurrence: Hydrothermal in veins, associated with natrolite, benitoite and eudialyte. Well-formed prismatic crystals up to 80 mm (3½ in) long come from the Benitoite Gem mine, San Benito Co., California, USA. It is also known from Mont St.-Hilaire, Quebec, Canada and Narssarsuaq, Greenland.

Epididymite
\(\text{NaBe}_2\text{Si}_3\text{O}_7(\text{OH}) \)
ORTHORHOMBIC

Properties: C – white, gray, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.6; H – 6-7; CL – good; F – uneven to conchoidal; M – short prismatic crystals, columnar and radial aggregates, granular.

Origin and occurrence: Hydrothermal in veins, associated with rhodochrosite, rhodonite and calcite. Rich aggregates and well-formed crystals about 10 mm (1/4 in) across found in Langban, Sweden; also in Hale Creek, California, USA; Broken Hill. New South Wales, Australia. Its spherical aggregates up to 30 mm (1½ in) in diameter are known from the Wessels mine, Kuruman, South Africa.
Neptunite, 28 mm, San Benito Co., U.S.A.

- Tabular crystals, lamellar aggregates, granular.
- Origin and occurrence: Hydrothermal in cavities of alkaline pegmatites, associated with zeolites. Tabular crystals up to 60 mm (2¼ in) across come from Mount Malosa, Malawi. It is also known from Langsundsfjord, Norway; Mont St.-Hilaire, Quebec, Canada; Narsarsuk, Greenland.

Bavenite

Ca₂Al₂Be₂Si₂O₂₆(OH)₂

- Orthorhombic

- Properties: C - white, yellowish, pinkish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 5.5; CL - good; F - uneven to conchoidal; M - prismatic to tabular crystals, radial and lamellar aggregates.
- Origin and occurrence: Hydrothermal in pegmatic cavities with albite; typically produced by beryl replacement in pegmatites or helvite replacement in skarns. Found in Baveno, Italy with crystals up to 20 mm (¾ in) across. Also known from Strzegom, Poland. Crystals up to 4 mm (¼ in) across found in the Hewitt quarry, USA.

Bavenite, 40 mm, Yermolayevskoye, Russia

Epidote, 70 mm, Apotity, Kola, Russia
Prehnite, 28 mm, Brandberg, Namibia
Fluorapophyllite, 47 mm, Poona, India

Prehnite
$\text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_2$

Orthorhombic

Properties: C - white, greenish to green, yellow, gray; S - white; L - vitreous; PS - transparent to translucent; DE - 2.9; H - 6.0-6.5; CL - good; F - uneven to conchoidal; M - tabular to prismatic crystals, usually forming botryoidal or spherical aggregates, granular.

Origin and occurrence: Hydrothermal in basalt cavities and in the Alpine-type veins, commonly associated with calcite, albite, epidote and zeolites. Rich aggregates are known from West Paterson, New Jersey, USA; Val di Fassa, Italy; Poona, India.

Astrophyllite, 30 mm, Khibiny Massif, Kola, Russia

Astrophyllite
$\text{(K,Na)}_3\text{(Fe,Mn)}_7\text{Ti}_2\text{Si}_8\text{O}_{24}(\text{OH})_7$

Triclinic

Properties: C - various hues of yellow; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.3; H - 3; CL - good; F - uneven to conchoidal; M - long prismatic crystals, bladed aggregates.

Origin and occurrence: Migmatic in alkaline pegmatites. Crystals and their radial aggregates reaching up to 100 mm (4 in) come from Mount Eveslogchorr, Khibiny massif, Kola Peninsula, Russia. It is also known from Mont St.-Hilaire, Quebec, Canada.

Fluorapophyllite, 45 mm (1 3/4 in) across found in Copper Valley, Brandberg, Namibia, Asbestos, Quebec, Canada and Talnakh, Siberia, Russia.

Fluorapophyllite
$\text{KCa}_4\text{Si}_8\text{O}_{24}(\text{F,OH})_8 \cdot 8\text{H}_2\text{O}$

Tetragonal

Properties: C - white, greenish yellowish, pinkish; S - white; L - greasy to pearly; D - transparent to translucent; DE - 2.4; H - 4.5-5; CL - perfect; F - uneven; M - prismatic and tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks in the Alpine-type veins, in ore veins and pegmatites. Well-formed crystals up to 100 mm (4 in) long are known from Jalgaon and Poona, India; Centreville and Fairfax,
Varieties: agalmatolite

Properties: C - white, greenish, yellow, gray; S - white; L - greasy to pearly; D - translucent to transparent; DE - 2.8; H - 1-2; CL - perfect; F - uneven; M - foliated aggregates, massive.

Origin and occurrence: Metamorphic in metamorphosed basic rocks and dolomites, together with actinolite, dolomite and chloride; hydrothermal in veins. Tabular crystals up to 20 mm (3/4 in) across come from Brumado, Bahia, Brazil and Chester, Massachusetts, USA. Rich foliated aggregates are known from Zillerthal, Austria. Pseudo-morphs after quartz crystals come from St. Gotthard, Switzerland. Large deposits of massive talc are mined in China.

Application: as a filling material in textile, paper and chemical industries, heat-resistant material.

Talc, 61 mm, Rochester, U.S.A.
Muscovite
MICA GROUP
KAl₃Si₃O₁₀(OH,F)₂
MONOCLINIC

Varieties: fuchsite

Properties: C - white, greenish, yellowish, pinkish, green (fuchsite), gray; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - tabular crystals, lamellar and scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists, gneisses; magmatic in granites and pegmatites; hydrothermal in veins or next to ore veins (fuchsite). Important rock-forming mineral, usually associated with quartz, K-feldspar, albite and biotite. Its sheets, reached up to 5 x 3 m in size and weighed up to 85 tons in the Inikurti mine, Nellore, India. Large sheets are also known from Custer, South Dakota, USA. Well-formed crystals up to 100 mm (4 in) across come from Alabashka near Murinka, Ural mountains, Russia. Other famous localities include Mamsk, Ural mountains, Russia and Cruzeiro mine, Minas Gerais, Brazil, where gemmy crystals were found.

Application: insulation material in electrical applications and construction.

Muscovite, 35 mm, Plumos, California, USA.

Celadonite
MICA GROUP
KFe³⁺(Mg,Fe²⁺,Al)Si₄O₁₀(OH)₂
MONOCLINIC

Properties: C - light green to blue-green; S - white; L - dull; D - translucent to almost opaque; DE - 3.0; H - 2; CL - perfect; F - uneven; M - earthy, sometime small scaly aggregates, massive.

Origin and occurrence: Hydrothermal as a product of mafic mineral replacement in volcanic rocks, associated with zoéites, prehnite and calcite. Famous localities are Val di Fassa and Monte Balda, Italy; also known from Bisbee, Arizona, USA.

Boromuscovite
MICA GROUP
KAl₂Si₃O₁₀(OH)₂
MONOCLINIC

Properties: C - yellowish; S - white; L - dull; D - transparent to translucent; DE - 2.8; H - 2.5; CL - perfect; F - uneven; M - small scaly aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in

Fuchsite, 4 mm, Pamir, Tadzhikistan
complex pegmatites, associated with albite, elbaite and lepidolite. Fine-grained scaly aggregates were described from the Little Three mine, Ramona, California, USA; also in Ročice, Czech Republic.

Paragonite

Mica Group

\[\text{NaAl}_3\text{Si}_3\text{O}_{10}(\text{OH,F})_2\]

Monoclinic

Properties: C - white, greenish, yellowish, pinkish; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 2.8; H - 2.5; CL B perfect; F - uneven; M - tabular crystals, scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists and gneisses. Fine-grained scaly aggregates are known from Pizzo Forno, Switzerland and elsewhere.

Barnumovite, 40 mm, Ramona, U.S.A.
MICA GROUP

Annite

$\text{KFe}_3\text{AlSi}_3\text{O}_{10}(\text{OH,F})_2$

MONOCLINIC

Properties: C - black, locally with reddish or greenish tint; S - colorless; L - vitreous to pearly; D - transparent to translucent, locally opaque; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Metamorphic in skarns; magmatic in some pegmatites and granites. Its lamellar aggregates are known from Langban, Sweden and Cape Ann, Massachusetts, USA. Crystals up to 150 mm (6 in) across come from Mont St.-Hilaire, Quebec, Canada.

Phlogopite

$\text{KMg}_3\text{AlSi}_3\text{O}_{10}(\text{OH,F})_2$

MONOCLINIC

Properties: C - light brown, greenish, yellowish, colorless, gray; S - white; L - vitreous to nearly pearly; D - transparent to translucent; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - tabular crystals, platy and scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists, gneisses, migmatites and different types of metamorphosed shales; magmatic in pegmatites, granites, syenites and diorites, rare in basalts and ultrabasic rocks. Typical rock-forming mineral, usually associated with quartz, feldspars and muscovite. Rich scaly aggregates are known from a pegmatite in Evje, Norway, where its crystals reach up to several meters across. Other famous localities are Bessnes, France; Uluguru mountains, Tanzania; Silver Crater mine, Ontario, Canada and Laacher See, Germany.

Biotite

$\text{K(Fe,Mg)}_3\text{AlSi}_3\text{O}_{10}(\text{OH,F})_2$

MONOCLINIC

Properties: C - brown to black, commonly with red or green tint; S - colorless; L - vitreous to pearly; D - transparent to translucent, locally opaque; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - tabular crystals, scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists, gneisses, migmatites and different types of metamorphosed shales; magmatic in pegmatites, granites, syenites and diorites, rare in basalts and ultrabasic rocks. Typical rock-forming mineral, usually associated with quartz, feldspars and muscovite. Rich scaly aggregates are known from a pegmatite in Evje, Norway, where its crystals reach up to several meters across. Other famous localities are Bessnes, France; Uluguru mountains, Tanzania; Silver Crater mine, Ontario, Canada and Laacher See, Germany.

Polylithionite

$\text{KLi}_2\text{AlSi}_4\text{O}_{16}(\text{F,OH})_2$

MONOCLINIC

Properties: C - gray, colorless, yellowish, purple; S - colorless; L - vitreous to pearly; D - transparent to translucent; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - tabular crystals, scaly aggregates, massive.

Origin and occurrence: Magmatic and locally also hydrothermal in alkaline pegmatites, granites and carbonatites, rare in Li-bearing granitic pegmatites. Well-formed crystals up to 40 mm (1 1/4 in) across are known from cavities in alkaline pegmatites from Mont St.-Hilaire, Quebec, Canada. It comes also from Illinaussaq, Greenland and from cavities in granitic pegmatites in Roceice, Czech Republic and
Zinnwaldite

MICA GROUP

KLiFeAl₂Si₃O₁₀(FeOH)₂

MONOCLINIC

Properties: C – gray, colorless, brown; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 3.7; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Hydrothermal in quartz veins and greisens; magmatic in pegmatites and granites, associated with fluorite, cassiterite and wolframite. Rich aggregates with scales up to 100 mm (4 in) across are known from quartz veins in Cinovec, Czech Republic. Crystals up to 150 mm (6 in) across come from pegmatitic cavities in Virgem da Lapa, Minas Gerais, Brazil. It also occurs in the Pikes Peak batholith, Colorado, USA; Bavno, Italy. Application: Li and Cs ore.

Trillithionite

MICA GROUP

KL₁.₅Al₂.₅Si₃O₁₀(FeOH)₂

MONOCLINIC

Properties: C – purple, pink, blue, colorless, green; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Magmatic in Li-bearing pegmatites and granites, commonly associated with elbaite, spodumene, petalite, quartz and albite; sometimes hydrothermal in quartz veins and pegmatites. Well-formed crystals from pegmatic cavities are known from Virgem da Lapa, Minas Gerais, Brazil. Massive aggregates come from the Stewart Lithia mine, Pala, California and the Brown Derby No. 1 mine, Colorado, USA; Varutrask, Sweden; Rozna, Czech Republic; Meldon Quarry, Devon, UK. Application: Li ore.

Polylithionite

MICA GROUP

KL₅Al₅Si₃O₁₀(FeOH)₂

MONOCLINIC

Properties: C – purple, pink, blue, colorless, green; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Magmatic in Li-bearing pegmatites and granites, commonly associated with elbaite, spodumene, petalite, quartz and albite; sometimes hydrothermal in quartz veins and pegmatites. Well-formed crystals from pegmatic cavities are known from Virgem da Lapa, Minas Gerais, Brazil. Massive aggregates come from the Stewart Lithia mine, Pala, California and the Brown Derby No. 1 mine, Colorado, USA; Varutrask, Sweden; Rozna, Czech Republic; Meldon Quarry, Devon, UK. Application: Li ore.

Biotite, 30 mm x. Ontario, Canada

elsewhere. Large industrial deposits known in Blatchford Lake, Northwest Territories, Canada. Application: Li and Cs ore.

Trillithionite, 30 mm, Tanco, Canada

Polylithionite, 30 mm, Lovozero Massif, Kola, Russia

Zinnwaldite, 10 mm, xx, Cinovec, Czech Republic

253
Margarite
CaAl_2Si_2O_8(OH)_2

MONOCLINIC • • •

Properties: C - pinkish, colorless, yellowish; S - colorless; L - vitreous to pearly; D - transparent to translucent; DE - 3.1; H - 3.5-4.5; CL B perfect; F - uneven; M - tabular crystals, pearly and scaly aggregates, massive.

Origin and occurrence: Metamorphic, associated with garnet, diaspore, tourmaline and staurolite in various types of metamorphosed shales. Coarse platy aggregates come from Chester, Massachusetts and Sterling Hill, New Jersey, USA.

Clintonite
Ca(Mg,Al)_3(AlSi)_2O_10(OH)_2

MONOCLINIC • •

Properties: C - colorless, yellowish, pinkish, greenish; S - colorless; L - vitreous to pearly; D - transparent to translucent; DE - 3.1; H - 3.5, CL - perfect, F - uneven, M - tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Metamorphic in contact metamorphosed marbles, associated with vesuvianite, grossular, diopside and spinel. Rich aggregates with lamellae up to 20 mm (⅝ in) across occur in Green Monster Mountain, Alaska and Crestmore, California, USA and Monzoni, Italy.

Stilpnomelane
100 mm. Horni Udoli, Czech Republic
Stilpnomelane

\[
\text{K(Fe}^{2+}\text{,Mg,Fe}^{3+})_8\text{Si}_{12}\text{(O,OH)}_7\]

MONOCLINIC

Properties: C – black, black-brown, black-green, yellow-brown; S – colorless; L – vitreous to dull; D – translucent to opaque; DE – 2.8; H – 3; CL – perfect; F – uneven; M – tabular crystals, foliated, lath-like and acicular aggregates.

Origin and occurrence: Metamorphic in Fe-rich shales, usually associated with chlorite, magnetite and albite. Crystals up to 20 mm (\(\text{\text{\text{\text{"m}} in}}\)) across come from Jim Pond township, Maine, USA. Foliated aggregates are known from Horni Udoli near Zlate Hory, Czech Republic; Mesabi Range, Minnesota, USA.

Montmorillonite

\[
\text{(Ca,Na)}_{0.33}\text{(Al,Mg)}_2\text{Si}_4\text{O}_{10}\text{(OH)}_2 \cdot n\text{H}_2\text{O}
\]

MONOCLINIC

Properties: C – white, yellowish, greenish, bluish; S – white; L – greasy; D – translucent to opaque; DE – 2.3; H – 1-2; CL – perfect, wet massive aggregates are plastic; F – uneven; M – earthy aggregates, massive.

Origin and occurrence: Hydrothermal as a product of replacement of other minerals in volcanic rocks, granitic pegmatites and sediments. It is abundant in many localities. Montmorillonite deposits are known from Antrim, Northern Ireland. UK; in Hungary; Slovakia and many places in the USA.

Application: ceramics and chemical industry.

Saponite

\[
\text{(Ca,Na)}_{0.3}\text{(Fe,Mg)}_3\text{Si}_4\text{O}_{10}\text{(OH)}_2 \cdot 4\text{H}_2\text{O}
\]

MONOCLINIC

Properties: C – white, yellowish, gray-green, bluish; S – white; L – greasy; D – translucent to opaque; DE – 2.1; H – 1-2; CL – perfect, massive aggregates are plastic under wet conditions; F – uneven; M – earthy, nodular, massive.

Origin and occurrence: Hydrothermal as a product of replacement of other minerals in volcanic rocks and serpentinites. It occurs together with copper in many places in Keweenaw Peninsula, Michigan, USA. Scales up to 10 mm (\(\text{\text{\text{\text{"m}} in}}\)) across described from Mont St.-Hilaire, Quebec, Canada.

Vermiculite

\[
\text{(Fe,Mg,Al)}_3\text{Si}_4\text{O}_{10}\text{(OH)}_2 \cdot 4\text{H}_2\text{O}
\]

MONOCLINIC

Properties: C – yellow-brown, gray-green, green-brown; S – white; L – greasy; D – translucent to opaque; DE – 2.5; H – 1.5; CL B perfect; F – uneven; M – scaly aggregates, massive; R – it expands when heated.

Origin and occurrence: Hydrothermal as a product of replacement of phlogopite and other mafic micas in various rock types. It occurs in Palabora, South Africa; Milbury, Massachusetts, USA; Kovdor massif, Kola Peninsula, Russia.

Application: electrical applications and paper industry.
Cookeite

CHLORITE GROUP

LiAl₄Si₃O₁₀(OH)₈

MONOCLINIC

Properties:
- C: white, yellowish, pinkish, brown; S: colorless; L: vitreous to pearly; D: transparent to translucent; DE: 2.6; H: 2.5-3.5; CL: perfect; F: uneven; M B: scaly, locally radial aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in Li-bearing pegmatites, associated with elbaite, lepidolite, fluorapatite and albite. It also replaces spodumene; metamorphic in Al-rich shales, together with diasporic and pyrophyllite. Massive aggregates, replacing spodumene, occur in the Tanco mine, Bernie Lake, Manitoba, Canada. It also comes from cavities in pegmatites in the Little Three mine.

Kammererite

CHLORITE GROUP

(Mg,Fe)₅Al₂Si₃O₁₀(OH)₈

MONOCLINIC

Varieties: kammererite

Properties:
- C: greenish, gray, white, yellowish, brown, red-purple (kammererite); S: colorless; L: vitreous to pearly; D: transparent to translucent; DE: 2.7; H: 2.5-3.5; CL: perfect; F: uneven; M B: poorly-developed tabular crystals, foliated and radial aggregates, massive.

Clinochlore

MONOCLINIC

Properties:
- C: greenish, gray, white, yellowish, brown, red-purple (kammererite); S: colorless; L: vitreous to pearly; D: transparent to translucent; DE: 2.7; H: 2.5-3.5; CL: perfect; F: uneven; M B: poorly-developed tabular crystals, foliated and radial aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in Li-bearing pegmatites, associated with elbaite, lepidolite, fluorapatite and albite. It also replaces spodumene; metamorphic in Al-rich shales, together with diasporic and pyrophyllite. Massive aggregates, replacing spodumene, occur in the Tanco mine, Bernie Lake, Manitoba, Canada. It also comes from cavities in pegmatites in the Little Three mine.

Ramona and the Himalaya mine, Mosa Grande, California. It is also known from the Pulsifer quarry, Maine, USA and Muiane, Mozambique.
Chamosite

CHLORITE GROUP

\[(Fe, Mg)_2\ Al_2\ Si_3\ O_10(OH)_8\]

MONOCLINIC

Properties: C - gray, gray-green, brown; S - gray-green; L - vitreous to dull; D - translucent to opaque; DE - 3.2; H - 2-2.5; CL - perfect; F - uneven; M - scaly and oolitic aggregates, massive.

Origin and occurrence: Metamorphic to hydrothermal in various types Fe-rich sediments, typically associated with siderite and magnetite. It is common in Chamoson, Switzerland; Nueice, Czech Republic. Spherical aggregates up to 15 mm (\(\frac{\pi}{2}\) in) in diameter found in Mont St.-Hilaire, Quebec, Canada.

Kaolinite

\[Al_2Si_2O_5(OH)_4\]

TRICLINIC

Properties: C - white, yellowish, greenish, gray; C - colorless; L - earthy; D - translucent to opaque; DE - 2.6; H - 1; CL - perfect; F - uneven; M - earthy and exceptionally scaly aggregates, massive.

Origin and occurrence: Hydrothermal as a result of feldspar replacement in various rock types. It forms large deposits in China, France, UK and Czech Republic. Application: raw material for ceramics.

Dickite

\[Al_2Si_2O_5(OH)_4\]

MONOCLINIC

Properties: C - white, yellowish; S - colorless; L - earthy to pearly; D - translucent to opaque; DE - 2.6; H - 1; CL - perfect; F - uneven; M - earthy and platy aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in hydrothermal veins, together with quartz, carbonates and sulfides. It occurs in Essen, Germany; Anglesey, Wales, UK; Kladno, Czech Republic. Microscopic crystals come from Mas d’Alary, France.
Nacrite
$\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - white, yellowish, gray-white; S - colorless; L - earthy to pearly; D - translucent to opaque; DE - 2.6; H - 2.5-3.5; CL - perfect; F - uneven; M - earthy and scaly aggregates, massive.

Origin and occurrence: Hydrothermal in cavities of hydrothermal veins, associated with quartz, fluorite and topaz. It occurs in Horni Slavkov, Czech Republic; Freiberg, Germany. Pseudo-morphs after topaz come from Ouro Preto, Minas Gerais, Brazil.

Antigorite
$\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - white, yellowish, greenish, gray; S - colorless; L - vitreous to pearly; D - translucent to opaque; DE - 2.6; H - 2.5-3; CL - perfect; F - uneven; M - foliated to radial aggregates, massive.

Origin and occurrence: Metamorphic in serpentinites, marbles and other Mg-rich rocks; hydrothermal in veins cross-secting these rocks. It is important rock-forming mineral. It occurs in Kraubat, Austria; Hrubsice, Czech Republic; Antigorio, Italy and elsewhere.

Amesite
$\text{Mg}_2\text{Al}_2(\text{SiAl})_2\text{O}_8(\text{OH})_4$

TRICLINIC

Properties: C - greenish, gray; S - colorless; L - vitreous to pearly; D - translucent; DE - 2.8; H - 2.5-3; CL - perfect; F - uneven; M - foliated to lamellar and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in Mg-rich rocks, associated with diaspore, magnetite and chromite. It comes from Chester, Massachusetts, USA. Crystals up to 40 mm (1 3/4 in) across found in Sarany, Ural mountains, Russia.

Cronstedtite
$\text{Fe}^{2+}_2\text{Fe}^{3+}_2\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - black, black-brown, black-green; S - dark olive-green; L - vitreous to submetallic; D - translucent to opaque; DE - 3.6; H - 3.5; CL - perfect; F - uneven; M - prismatic crystals, columnar aggregates.

Origin and occurrence: Hydrothermal in ore veins. Fan-shaped aggregates of crystals come from Pribram and Kutna Hora, Czech Republic; Ouro Preto, Minas Gerais, Brazil; Salsigne mine, Auge, France.

Amesite. 40 mm. Sarany, Ural Mts., Russia
Cronstedtite, 42 mm. Hunan, Bolivia

Chrysocolla
(Cu,Al)₂H₂Si₂O₅(OH)₄ . n H₂O
MONOCLINIC

Properties: C - different hues of blue-green; S - white; L - vitreous, greasy to earthy; D - translucent to almost opaque; DE - 2.0-2.4; H - 2-4; CL - none; F - conchoidal to uneven; M - microscopic acicular crystals, botryoidal, stalactitic and earthy aggregates.

Origin and occurrence: Secondary in Cu deposits, associated with malachite and other secondary Cu minerals. Rich aggregates come from many places in Arizona, USA, like Bisbee and Morenci. It is also known from Mednorudnyansk, Ural mountains, Russia and Broken Hill, New South Wales, Australia.

Allophane
approximately Al₂SiO₅ . n H₂O
AMORPHOUS

Properties: C - white, gray, bluish, greenish, brown; S - white; L - vitreous, greasy and earthy; D - transparent, translucent to opaque; DE - 1.9; H - 2-3; CL - none; F - conchoidal to uneven; M - botryoidal, stalactitic and earthy aggregates.

Origin and occurrence: Hydrothermal product of alteration along the cracks of sedimentary rocks in coal deposits and in the oxidation zone of ore deposits, associated with other secondary minerals. Rich botryoidal aggregates occur in Delr, Germany; Moldova Nuova, Romania; New Cornelia mine, Arizona, USA; El Dragon mine, Potosi, Bolivia.
Palygorskite

\[(\text{Mg,Al})_2\text{Si}_4\text{O}_{10}(\text{OH})_2 \cdot 4\text{H}_2\text{O}\]

MONOCLINIC

Properties:
- **C** - white, gray; **S** - white; **L** - dull; **D** - translucent to almost opaque; **DE** - 2.2; **H** - 1; **CL** - good; **F** - uneven, aggregates plastic under wet conditions; **M** - acicular crystals, fibrous aggregates, massive.

Origin and occurrence: Hydrothermal as a product of alteration of different rock types, such as serpentinites, granites, marbles and graywackes, also in ore veins and the Alpine-type veins. Rich aggregates resembling leather occur along the cracks in marbles in Hejná near Hornad'ovice, Czech Republic; in the Mammoth mine, Tiger, Arizona, USA and in Palygorskaya, Russia.

Sepiolite

\[\text{Mg}_4\text{Si}_6\text{O}_{15}(\text{OH})_2 \cdot 6\text{H}_2\text{O}\]

ORTHORHOMBIC

Properties:
- **C** - white, yellowish, gray; **S** - white; **L** - dull; **D** - opaque; **DE** - 2.0; **H** - 2-2.5; **CL** - not determined; **F** - uneven; **M** - earthy aggregates, massive.

Origin and occurrence: Hydrothermal as a product of serpentine alteration, typically associated with magnesite. Classic locality is Eskisehir, Turkey; also known from Biskoupky, Czech Republic.

Sepiolite

\[\text{Ca}_4\text{Si}_3\text{O}_8(\text{OH},\text{F})_4 \cdot 2\text{H}_2\text{O}\]

TRICLINIC

Properties:
- **C** - white; **S** - white; **L** - pearly; **D** - transparent to translucent; **DE** - 2.6; **H** - 3; **CL** - perfect; **F** - uneven; **M** - platy crystals, commonly with radial structure.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, associated with zeolites. Its most important locality is Radejein, Czech Republic, where it forms spherical aggregates up to 10 mm (⅞ in) in diameter. Also known from Schellkopf, Germany and Monte Somma, Italy.

Cavansite

\[\text{CaVOSi}_4\text{O}_{10} \cdot 4\text{H}_2\text{O}\]

ORTHORHOMBIC

Properties:
- **C** - green-blue, blue; **S** - light blue; **L** - vitreous; **D** - transparent; **DE** - 2.2; **H** - 3-4; **CL** - good; **F** - uneven; **M** - long prismatic to acicular crystals, radial aggregates.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, associated with calcite, apophyllite and zeolites. Rich radial aggregates up to 30 mm.
Cavansite. 120 mm. Poona, India

Nepheline

\[(K,Na)AlSiO_4\]

Properties: C – colorless, white, greenish, yellowish, gray, green, brown; S – white; L – vitreous to greasy; D – transparent to translucent; DE – 2.7; H – 5.5-6; CL – none; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in many alkaline rocks, as alkaline syenites and their pegmatites, also in some basalts; rare metamorphic in gneisses. It is a typical rock-forming mineral, associated with leucite, augite and apatite. Well-formed crystals found in Mount Vesuvius, Italy. Rich aggregates are known from many localities in Khibiny massif, Kola Peninsula, Russia. Crystals up to 70 cm (27½ in) long occur in Davis Hill, Bancroft, Ontario. Perfect crystals up to 35 mm (1½ in) long, come from Mont St.-Hilaire, Quebec, Canada.

Application: locally as AI ore and in ceramic industry.
Petalite
LiAISi₄O₁₀

MONOCLINIC

Properties: C - colorless, white, greenish, yellowish; S - white; L - vitreous; D - transparent to translucent; DE - 2.5; H - 6; CL - good; F - uneven to conchoidal; M - prismatic crystals, granular.

Origin and occurrence: Magmatic in Li-bearing pegmatites, associated with lepidolite, elbaite, amblygonite and locally replaced by a mixture of quartz and spodumene. Gigantic crystals several meters long, come from Bikita, Zimbabwe; and Varutask, Sweden. Clear gemmy crystals up to 230 mm (9½ in) across found in pegmatite cavities in Paprok, Afghanistan and also in San Piero in Campo, Elba, Italy. Crystals up to 100 mm (4 in) across occur in Araqau, Minas Gerais, Brazil.

Application: ceramic industry.

Chkalovite
Na₂BeSi₂O₆

ORTHORHOMBIC

Properties: C - colorless, white; S - white; L - vitreous; D - transparent to translucent; DE - 2.7; H - 6; CL - imperfect; F - conchoidal; M - prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in alkaline pegmatites, usually associated with natrolite, sodalite and eudialyte. Crystals up to 200 mm (7½ in) across come from the Umbozero mine, Mount Alluaiv, Lovozero massif, Kola Peninsula, Russia; also at Julianhab, Greenland and Mont St.-Hilaire, Quebec, Canada.

Petalite, 23 mm, Paprok, Afghanistan

Chkalovite, 70 mm, Umbozero, Kola, Russia
Sanidine
FELDSPAR GROUP
KAlSi3O8
MONOCLINIC

Properties: C - colorless, white, yellowish, pinkish, gray; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 6-6.5; CL - good; F - uneven to conchoidal; M - prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in acid volcanic rocks, as rhyolites and trachytes, a typical rock-forming mineral. Well-formed crystals and their combinations up to 100 mm (4 in) in size occur in rhyolites and trachytes in Drachenfels and Laacher See, Germany. It also comes from Roc de Courlande, France; Beaverdell, British Columbia, Canada; Kyustendil, Bulgaria.

Orthoclase
FELDSPAR GROUP
KAlSi3O8
MONOCLINIC

Varieties: adularia, moonstone (gemmy variety with chatoyancy)

Properties: C - colorless, white, yellowish, pinkish, gray, brown, yellow; S - white; L - vitreous to pearly (adularia); D - transparent to translucent; DE - 2.5; H - 6-6.5; CL - good; F - uneven to conchoidal; M - prismatic and tabular crystals and their combinations, granular, massive.

Origin and occurrence: Magmatic in rhyolites, trachytes, granites, syenites and pegmatites; metamorphic in various rock types, as orthogneisses and migmatites; hydrothermal in the Alpine-type veins, ore veins and some sediments, also in placers, a typical rock-forming mineral. Well-formed crystals and twins up to 200 mm (7½ in) across come from granites in Twentynine Palms, California, USA; Marina di Campo, Elba, Italy; Loket and Karlovy Vary, Czech Republic; in pegmatite cavities in Strzegom, Poland; San Piero in Campo, Elba, Italy. Yellow gemmy crystals up to 70 mm (2½ in) across found in Itrongay, Madagascar. Gigantic feldspar crystals up to tens of meters long known from several pegmatite localities in Black Hills, South Dakota, USA; also Hagendorf, Germany. Adularia is known from Alpine-type veins in St. Gotthard, Switzerland; pebbles of moonstone occur in gem-bearing gravels in Ratnapura, Sri Lanka.

Application: ceramic and glass industry, moonstone as a gemstone.
Microcline

FELDSPAR GROUP

KAlSi₃O₈

TRICLINIC

Varieties: amazonite

Properties: C – colorless, white, yellowish, pinkish, gray, light to dark green (amazonite); S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granites, syenites and pegmatites; metamorphic in various rock types, as orthogneisses and migmatites; hydrothermal in the Alpine-type veins and ore veins; a typical rock-forming mineral. Well-formed amazonite crystals up to 40 cm (15 ¾ in) across occur in pegmatite cavities in Crystal Peak, Colorado, USA; Keivy, Kola Peninsula, Russia; Morefield mine, Virginia, USA. Gigantic microcline crystals up to 12 m (39 ft) across come from pegmatites in Black Hills, South Dakota, USA; Kaatiala, Finland.

Application: ceramic industry, amazonite as a decorative stone.

Hyalophane

FELDSPAR GROUP

(K,Ba)Al(Si,Al)₃O₈

MONOCLINIC

Properties: C – colorless, white, yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 2.9; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Amazonite, 60 mm, Keivy, Kola, Russia

Application: ceramic industry, amazonite as a decorative stone.
Origin and occurrence: Magmatic in phonolites; metamorphic in various rock types, as marbles, gneisses and Mn-rich rocks; hydrothermal in the Alpine-type and ore veins. Crystals up to 100 mm (4 in) across found in Alpine-type veins near Busovaca, Bosnia-Hercegovina.

Albite
FELDSPAR GROUP
NaAlSi3O8

Varieties: pericline, cleavelandite

Properties:
C - colorless, white, yellowish, pinkish, gray, greenish, bluish; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 6-6.5; CL - good; F - uneven to conchoidal; M - tabular crystals and their twins, platy aggregates, granular, massive.

Origin and occurrence: Magmatic in granites, syenites and their pegmatites; metamorphic in various rock types, as orthogneisses, migmatites, phyllites and metamorphosed shales; hydrothermal in the Alpine-type veins and ore veins, a typical rock-forming mineral. Well-formed tabular to platy cleavelandite crystals up to 150 mm (6 in) across occur in pegmatite cavities in the Amelia district, Virginia and the Pala district, California, USA. Albite crystals also come from Strzegom, Poland; San Piero in Campo, Elba, Italy; Murzinka, Ural mountains, Russia; many localities in Minas Gerais, Brazil. Pericline crystals are known from the cracks along Alpine-type veins in Grossgreincr, Austria; St. Gotthard, Switzerland; also from ore veins in Rovnava, Slovakia.

Application:
peristerite and sunstone are used as gemstones.
Andesine
FELDSPAR GROUP
(Na₀,7-0,5Ca₀,3-0,5Al₁,3-1,5Si₂,7-2,5O₈)
TRICLINIC

Properties:
C - yellowish, pinkish, gray, light green;
S - white; L - vitreous; D - transparent to translucent;
DE - 2.7; H - 6-6.5; CL - good; F - uneven to conchoidal;
M - platy aggregates, granular, massive.

Origin and occurrence:
Magmatic in andesites, diorites; metamorphic in gneisses and migmatites; typical rock-forming mineral. Large grains are known from migmatites in Bodenmais, Germany and Adamello, Italy.

Labradorite
FELDSPAR GROUP
(Ca₀,7-0,5Na₀,3-0,5Al₁,5-1,7Si₂,5-2,3O₈)
TRICLINIC

Properties:
C - white to dark gray, greenish; S - white; L - vitreous, pearly; D - transparent to translucent; DE - 2.7; H - 6-6.5; CL - good; F - uneven to conchoidal; M B cleavable aggregates, granular, massive.

Origin and occurrence:
Magmatic in gabbros, basalts, anorthosites; metamorphic in amphibolites. Large iridescent aggregates up to 1 m (39¾ in) across, come from Nain, Labrador, Quebec, Canada and also occur in Korostenskiy massif, Ukraine and Ylamaa, Finland.

Application:
as a decorative stone.

Anorthite
FELDSPAR GROUP
(CaAl₂Si₂O₈)
TRICLINIC

Properties:
C - gray, greenish, pinkish; S - white; L - vitreous, dull; D - transparent to translucent; DE - 2.8; H - 6-6.5; CL - good; F - uneven to conchoidal; M B granular, massive.

Origin and occurrence:
Magmatic in gabbros, basalts, anorthosites; metamorphic in contact metamorphosed rocks. Pinkish grains and poorly-developed crystals come from Val di Fassa, Italy. Crystals up to 50 mm (2 in) across are known from Miyake-Jima Island, Japan. It was also found in Mount Erebus, Antarctica and Monte Somma, Italy.
Danburite
\[\text{CaB}_2\text{Si}_2\text{O}_8 \]

ORTHORHOMBIC

Properties:
- Color: colorless, white, gray, greenish, pinkish, yellow, brown, red-brown;
- Luster: vitreous, dull;
- Transparency: transparent to translucent;
- Hardness: 7;
- Cleavage: imperfect;
- Fracture: uneven to conchoidal;
- Habit: prismatic crystals, columnar aggregates, granular, massive.

Origin and occurrence:
- Hydrothermal in pegmatite cavities, ore veins and the Alpine-type veins; metamorphic in skarns and contact metamorphosed rocks.
- Well-formed prismatic crystals up to 250 mm (9.79 in) long come from Russell, New York, USA; Toroku, Japan; Dalnegorsk, Russia; and Charcas, San Luis Potosi, Mexico.

Cancrinite
\[\text{Na}_6\text{CaAl}_6\text{Si}_6\text{O}_{24}(\text{CO}_3) \cdot 2\text{H}_2\text{O} \]

HEXAGONAL

Properties:
- Color: colorless, white, yellow, orange, bluish;
- Luster: vitreous;
- Transparency: transparent to translucent;
- Density: 2.4;
- Hardness: 5-6;
- Cleavage: good;
- Fracture: uneven to conchoidal;
- Habit: prismatic crystals, granular, massive.

Origin and occurrence:
- Magmatic in alkaline syenites; hydrothermal as a product of replacement of volcanic rocks, associated with nepheline and sodalite.
- Crystals up to 20 mm (3/4 in) across come from Mont St.-Hilaire, Quebec, Canada. It was also found in Litchfield, Maine, USA; Cancrinite Hill, Bancroft, Ontario, Canada and elsewhere.

Leifite
\[\text{Na}_2(\text{Si,Al,Be})_7(\text{O,OH,F})_{14} \]

TRIGONAL

Properties:
- Color: colorless;
- Luster: vitreous;
- Transparency: translucent;
- Density: 2.5;
- Hardness: 6;
- Cleavage: good;
- Fracture: uneven;
- Habit: acicular crystals.

Origin and occurrence:
- Hydrothermal in cavities of alkaline pegmatites, associated with microcline and zinnwaldite. Crystals up to 20 mm (3/4 in) across occur in Narssarsuaq, Greenland. Fine crystals are also known from Mont St.-Hilaire, Quebec, Canada, associated with scapolite.
Sodalite

Na₈Al₆Si₆O₂₄Cl₂

CUBIC ● ● ●

Varieties: hackmanite

Properties: C - colorless, white, blue, yellow, pink (hackmanite); S - white; L - vitreous; D - transparent to translucent; DE - 2.3; H - 5-6; CL - good; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Magmatic in alkaline syenites and phonolites, associated with nepheline, zircon and titanite; hydrothermal in marbles. Granular aggregates are known from the Princess Sodalite mine, Bancroft, Ontario, Canada and Ditrau, Romania. Crystals up to 100 mm (4 in) across come from Kangerdluarssuk, Greenland.

Application: cut as a gemstone.

Noseane

Na₈Al₆Si₆O₂₄(SO₄)

CUBIC ● ● ●

Properties: C - colorless, white, blue, gray, black; S - white; L - vitreous; D - transparent to translucent; DE - 2.3; H - 5-6; CL - good; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Magmatic in alkaline basalts and similar effusive rocks, associated with nepheline and hawaiite. Granular aggregates are known from Laacher See, Germany and Monte Somma, Italy.

Lazurite

(Na,Ca)₈Al₆Si₆O₂₄(S,SO₄)

CUBIC ● ● ●

Properties: C - dark blue; S - light blue; L - vitreous; D - transparent to translucent; DE - 2.4; H - 5-5.5; CL - imperfect; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Metamorphic in contact metamorphosed marbles, associated with pyrite. Crystals up to 50 mm (2 in) across come from Sar-e-Sang, Badakhshan province, Afghanistan. Granular aggregates are known from many localities, such as Malobystinskoye deposit near Lake Baikal, Russia or Monte Somma, Italy.

Application: decorative stone and gemstone.

Nosean, 6 mm grains. Laacher See, Germany

Lazurite, 60 mm. Afghanistan
Lazurite, 21 mm x. Nuristan, Afghanistan

Tugtupite

TETRAGONAL • •

Properties: C - white, pink, red, bluish; S - white; L - vitreous; D - transparent to translucent; DE - 2.3; H - 5; CL - good; F - uneven to conchoidal; M - small crystals, granular, massive.

Origin and occurrence: Hydrothermal in alkaline syenites and their pegmatites, also as a product of chkalovite alteration. Aggregates up to 60 mm (2½ in) across come from the Umbozero mine, Mount Alluaiv, Lovozero massif, Kola Peninsula, Russia and Illimsausaq, Greenland. Small crystals occur in the Poudrette quarry, Quebec, Canada.

Tugtupite, 90 mm, Illimsausaq, Greenland

Danalite

Fe₄Be₃Si₃O₁₂S

CUBIC • •

Properties: C - gray, yellow, pink, red, brown; S - white; L - vitreous; D - transparent to translucent; DE - 3.4; H - 5.5-6; CL - imperfect; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; hydrothermal in greisens, skarns and ore veins. It occurs in Cape Ann, Massachusetts, USA; Hortekollen, Norway and Coolgardie, Western Australia, Australia.

Danalite, 70 mm, Ysjoberg, Sweden
Helvite, 2 mm xx. Cavnic, Romania

Helvite

\[
\text{Mn}_4\text{Be_3Si_2O_15S}
\]

CUBIC • • •

Properties:
- C - brown, gray, yellow, yellow-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.4; H - 6; CL - good; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites and alkaline syenites; hydrothermal in greisens, skarns and ore deposits. Cubic crystals up to 25 mm (1 in) across known from the Sawtooth Batholith, Idaho, USA. Crystals also come from Schwarzenberg, Germany; Cavnic, Romania; and Oslofjord, Norway.

Application: Be ore.

Scapolite, 44 mm x. Leslie Lake, Quebec, Canada

Marialite

SCAPOLITE GROUP

\[
\text{Na}_8(\text{AlSi}_3\text{O}_8)_6(\text{Cl}_2\text{SO}_4)
\]

TETRAGONAL • • •

Properties:
- C - colorless, white, gray, purplish; yellow; S - white; L - vitreous, locally pearly; D - transparent to translucent; DE - 2.5; H - 5-6; CL - good; F - uneven to conchoidal; M - prismatic crystals, columnar aggregates, granular, massive; LU - yellow to orange.

Origin and occurrence: Hydrothermal in veins, cross-cutting alkaline metamorphic rocks and in pegmatites; cross-cutting ultrabasic rocks; metamorphic in marbles and metaevaporites. It comes from Ankazobe, Madagascar; Umba, Tanzania and Crestmore, California, USA.

Meionite

SCAPOLITE GROUP

\[
\text{Ca}_8(\text{Al}_2\text{Si}_2\text{O}_8)_6(\text{CO}_3\text{SO}_4)
\]

TETRAGONAL • • •

Properties:
- C - colorless, white, gray, purplish, green, blue; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 5-6; CL - good; F - uneven to conchoidal; M - long prismatic crystals, columnar aggregates, granular, massive; LU - yellow to orange.

Leucite, 30 mm. Mt. Vesuvius, Italy
Origin and occurrence: Metamorphic in skarns, marbles, granulites and in contacts of volcanic rocks; hydrothermal in veins, cross-cutting Ca-rich rocks. Well formed crystals up to 40 cm (15% in) across come from Lake Clear and Eganville, Ontario, Canada. Crystals are also known from Monte Somma, Italy; Sludyanka, Siberia, Russia and Pargas, Finland.

Leucite
ZEOLITE GROUP
KA$_2$Si$_2$O$_6$

TETRAGONAL

Properties: C - colorless, white, gray; S - white; L - vitreous; D - transparent to translucent; DE - 2.5; H - 5.5-6; CL - imperfect; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Metamorphic in skarns, marbles, granulites and in contacts of volcanic rocks; hydrothermal in veins, cross-cutting Ca-rich rocks. Well formed crystals up to 40 cm (15% in) across come from Lake Clear and Eganville, Ontario, Canada. Crystals are also known from Monte Somma, Italy; Sludyanka, Siberia, Russia and Pargas, Finland.

Analcime
ZEOLITE GROUP
NaAlSi$_2$O$_6$·H$_2$O

CUBIC

Properties: C - colorless, white, pinkish, yellowish; S - white; L - vitreous; D - transparent to translucent; DE - 2.3; H - 5-5.5; CL - imperfect; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Mainly hydrothermal as a product of nepheline or sodalite replacement; rare magmatic in effusive rocks; also in sediments, associated with calcite and zeolites. Well-formed crystals up to 30 cm (12 in) across come from Nidym, Siberia, Russia; Lago Maggiore, Italy; Mont St.-Hilaire, Quebec, Canada; West Paterson, New Jersey, USA and elsewhere.

Pollucite
ZEOLITE GROUP
(Cs,Na)AlSi$_2$O$_6$·H$_2$O

CUBIC

Properties: C - colorless, white, gray; S - white; L - vitreous; D - transparent to translucent; DE - 2.9; H - 6.5-7; CL - none; F - uneven to conchoidal; M - isometric crystals, granular, massive.

Origin and occurrence: Magmatic and rarely also hydrothermal in Li-bearing pegmatites, associated with lepidolite, albite, quartz and petalite. Almost monomineral layer of pollucite several meters thick occurs in the Tanco mine, Bernic Lake, Manitoba, Canada. White and colorless crystals from pegmatite cavities up to 60 cm (24 in) across come from Paprok, Afghanistan. Also known from San Piero in Campo, Elba, Italy and Gilgit, Pakistan. Application: ceramic industry, Cs ore.
Natrolite

ZEOLITE GROUP

\[\text{Na}_2\text{Al}_2\text{Si}_3\text{O}_{10} \cdot 2\text{H}_2\text{O} \]

ORTHORHOMBIC

Properties:
- **C** - colorless, white, yellowish, pinkish;
- **S** - white;
- **L** - vitreous to silky;
- **D** - transparent to translucent;
- **DE** - 2.2;
- **H** - 5-5.5;
- **CL** - perfect;
- **F** - uneven to conchoidal;
- **M** - long prismatic to acicular crystals, fibrous and radial aggregates, granular, massive.

Origin and occurrence:
Hydrothermal in cavities in volcanic rocks, alkaline pegmatites, along the Alpine-type fissures, also as a product of plagioclase replacement, commonly associated with calcite and zeolites. Colorless and white acicular crystals up to 30 cm (12 in) long come from cavities of alkaline pegmatites in Mount Putelichorr, Khibiny massif, Kola Peninsula, Russia. Crystals were also found in Narsarsuuk, Greenland and Mont St.-Hilaire, Quebec, Canada. Crystals also occur in cavities of basaltic rocks in Teigarhorn, Iceland; Zalezy and Soutisky, Czech Republic and in Faeroe Islands.
Skolecite
ZEOLITE GROUP
CaAl$_2$Si$_3$O$_{10} \cdot 3$ H$_2$O

MONOCLINIC

Properties: C – colorless, white; S – white; L – vitreous to silky; D – transparent to translucent; DE – 2.3; H – 5; CL – good; F – uneven; M – long prismatic to acicular crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks and along the Alpine-type fissures, associated with calcite and zeolites. Clear prismatic crystals up to 200 mm (7½ in) long come from basalt cavities near Nasik, India. Crystals come also from Teigarhorn, Iceland and Suderoy, Faeroe Islands.

Mesolite
ZEOLITE GROUP
Na$_{16}$Ca$_{16}$Al$_{48}$Si$_{2}$O$_{240} \cdot 64$ H$_2$O

ORTHORHOMBIC

Properties: C – colorless, white; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.3; H – 5-5.5; CL – good; F – uneven to conchoidal; M – prismatic crystals in clusters with radial structure, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, also as a product of hydrothermal feldspar replacement. Colorless and white acicular crystals, forming radial aggregates up to 50 mm (2 in) in diameter come from Old Kilpatrick, Scotland, UK and West Paterson, New Jersey, USA. Hemispherical aggregates up to 30 mm (1¼ in) across known from Vinaicka hora near Kladno, Czech Republic.

Thomsonite
ZEOLITE GROUP
Ca$_2$Na$_4$(Al,Si)$_2$Si$_4$O$_{20} \cdot 6$ H$_2$O

ORTHORHOMBIC

Properties: C – colorless, white, yellowish, brown-red; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.3; H – 5-5.5; CL – good; F – uneven to conchoidal; M – prismatic crystals in clusters with radial structure, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, also as a product of hydrothermal feldspar replacement. Colorless and white acicular crystals, forming radial aggregates up to 50 mm (2 in) in diameter come from Old Kilpatrick, Scotland, UK and West Paterson, New Jersey, USA. Hemispherical aggregates up to 30 mm (1¼ in) across known from Vinaicka hora near Kladno, Czech Republic.
Gonnardite
ZEOLITE GROUP
(Na,Ca)₆₋₈(Al, Si)₂₀O₄₀ · 12 H₂O
TETRAGONAL

Properties: C - colorless, white, yellowish; S - white; L - vitreous to pearly; D - transparent to translucent; DE - 2.3; H - 4.5-5; CL - good; F - uneven to conchoidal; M - prismatic crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, associated with zeolites, also in the contact zone of marbles, associated with wollastonite. Acicular crystals and fibrous aggregates occur in Aci Castello, Sicily, Italy; Weilberg, Germany; Bundoora, Victoria, Australia.

Edingtonite
ZEOLITE GROUP
BaAl₂Si₃O₁₀ · 3 H₂O
TETRAGONAL

Properties: C - white, gray, pinkish; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 4; CL - good; F - uneven to conchoidal; M - prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in cavities and along the cracks in volcanic rocks, associated with calcite and harmotome. Colorless and white prismatic crystals up to 40 mm (1" in) across come from Old Kilpatrick, Scotland, UK; Stare Ransko, Czech Republic.
Czech Republic and Mont St.-Hilaire, Quebec, Canada.

Dachiardite-Ca

ZEOLITE GROUP

\[(\text{Ca}_{0.5}\text{Na,K})_5\text{Al}_5\text{Si}_{19}\text{O}_{48} \cdot 13\text{H}_2\text{O}\]

MONOCLINIC

Properties:
- **C**: colorless, white, yellowish; **S**: white; **L**: vitreous to pearly; **D**: transparent to translucent; **DE**: 2.1; **H**: 4-4.5; **CL**: good; **F**: uneven to conchoidal; **M**: prismatic crystals and complex interpenetration twins.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites, associated with albite, petalite and elbaite, also as pseudo-morphs after petalite. It occurs in San Picro in Campo, Elba, Italy and in the Opal Hill quarry, Riverside, California, USA.

Ferrierite-Ca

ZEOLITE GROUP

\[(\text{Ca},\text{Na},\text{K},\text{Mg})_6\text{Al}_4\text{Si}_3\text{O}_{18} \cdot 18\text{H}_2\text{O}\]

ORTHORHOMBIC

Properties:
- **C**: colorless, white, greenish, pink, brownish; **S**: white; **L**: vitreous; **D**: transparent to translucent; **DE**: 2.1; **H**: 3-3.5; **CL**: good; **F**: uneven to conchoidal; **M**: tabular crystals, platy and columnar aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks in the Alpine-type veins, in ore veins and sediments, associated with calcite and other zeolites. Colorless and white acicular crystals up to 38 cm (14 4/5 in) long come from the Pandulena Hill Quarries, India. Crystals up to 150 mm (6 in) long known from Pine Creek, Bishop, California, USA. It was also found in Dillenburg, Germany.

Laumontite

ZEOLITE GROUP

\[\text{Ca}_4\text{Al}_8\text{Si}_{16}\text{O}_{48} \cdot 18\text{H}_2\text{O}\]

MONOCLINIC

Properties:
- **C**: colorless, white, yellowish, pinkish; **S**: white; **L**: vitreous; **D**: transparent to translucent, weathered almost opaque; **DE**: 2.4; **H**: 3-4; **CL**: good; **F**: uneven to conchoidal; **M**: prismatic crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks in the Alpine-type veins, in ore veins and sediments, associated with calcite and other zeolites. Colorless and white acicular crystals up to 38 cm (14 4/5 in) long come from the Pandulena Hill Quarries, India. Crystals up to 150 mm (6 in) long known from Pine Creek, Bishop, California, USA. It was also found in Dillenburg, Germany.
Heulandite-Ca

ZEOLITE GROUP

\((\text{Ca}_0.3\text{Sr}_0.5\text{Na}_2\text{K})_{4.5}\text{Al}_9\text{Si}_{2.7}\text{O}_{32} \cdot 24\text{H}_2\text{O}\)

MONOCLINIC

Properties: C - colorless, white, yellowish, pinkish, red, brown; S - white; I - B vitreous to pearly; D - transparent to translucent. DE - 2.1; H - 3.5-4; CL - perfect; F - uneven to conchooidal; M - prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in the Alpine-type fissures, ore veins and sedimentary rocks, usually associated with calcite and other zeolites. Colorless and white tabular crystals up to 100 mm (4 in) across come from Nasik, India; West Paterson, New Jersey, USA; Teigarhorn, Iceland. Red heulandite found in Val di Fassa, Italy.
Clinoptilolite-Ca

ZEOLITE GROUP

(Ca0.5Na,5K1.5Al9Si27O72·24H2O)

MONOCLINIC

Properties: C - colorless, white, yellowish, pinkish, red, greenish; S - white; L - vitreous; D - transparent to translucent; DE - 2.2; H - 3.5-4; CL - perfect; F - uneven to conchoidal; M - platy crystals, massive.

Origin and occurrence: Hydrothermal in volcanic-sedimentary rocks. Large industrial deposits occur in New Zealand, Japan and Australia. Crystals come from Agate Beach, Oregon, USA.

Application: construction, chemical industry and agriculture.

Stilbite-Ca

ZEOLITE GROUP

(Ca0.5Na,5K1.5Al9Si27O72·28H2O)

MONOCLINIC

Properties: C - colorless, white, yellowish, pinkish, brown; S - white; L - vitreous, locally pearly; D - transparent to translucent; DE - 2.2; H - 3.5-4; CL - good; F - uneven to conchoidal; M - prismatic and tabular crystals, commonly complicated interpenetration twins and sheaf-like aggregates, granular, massive.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, along Alpine-type fissures, in ore veins, also in sedimentary rocks and hot springs, typically associated with calcite and other zeolites. Colorless and white tabular crystals and their combinations up to 200 mm (7 3/8 in) across come from the Pandulena Hill Quarries, India. Crystals are also known from Teigarhorn, Iceland; Faeroe Islands; West Paterson, New Jersey, USA and elsewhere.

Epistilbite

ZEOLITE GROUP

(Ca3Na2Al5Si4O12·4H2O)

MONOCLINIC

Properties: C - colorless, white, yellowish, pinkish, light brown; S - white; L - vitreous; D - transparent to translucent; DE - 2.2; H - 4; CL - good; F - uneven to conchoidal; M - prismatic crystals, radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks; associated with other zeolites. Clear and white tabular crystals and their twins up to 30 mm (1 3/16 in) across come from Jalgaon, India; also in Teigarhorn, Iceland and Faeroe Islands.

Stilbite-Ca, 83 mm, Nasik, India
Gismondine

ZEOLITE GROUP

CaAl\(_2\)Si\(_2\)O\(_8\) • 4.5 H\(_2\)O

MONOCLINIC

Properties: C - colorless, white, bluish, pinkish; S - white; L - vitreous; D - transparent to translucent; DE - 2.3; H - 4.5; CL - good; F - uneven; M - complex twins of crystals, platy aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in hydrothermally altered rocks. It comes from Capo di Bové, Italy; Schiffen, Germany and Dobrna, Czech Republic.

Phillipsite-K

ZEOLITE GROUP

(K,Na\(_2\)Al\(_5\)Si\(_3\)O\(_12\) • 12 H\(_2\)O

MONOCLINIC

Properties: C - colorless, white, reddish; S - white; L - vitreous; D - transparent to translucent; DE - 2.2; H - 4.5; CL - good; F - uneven; M - prismatic crystals and complex interpenetration twins, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, sedimentary rocks and hot springs; associated with calcite and other zeolites. Colorless and white interpenetration twins up to 20 mm ("in") across come from Capo di Bové, Italy; Doughboys, Tasmania, Australia; Sovinee near Litomice, Czech Republic and elsewhere.

Harmotome

ZEOLITE GROUP

(Ba\(_0.5\),Ca\(_0.5\),K,Na\(_2\)Al\(_5\)Si\(_3\)O\(_12\) • 12 H\(_2\)O

MONOCLINIC

Properties: C - colorless, white, gray, reddish, yellow, brown; S - white; L - vitreous; D - transparent to translucent; DE - 2.4; H - 4.5; CL - good; F - uneven; M - prismatic crystals, commonly complex interpenetration twins, granular massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in the Alpine-type veins, ore veins and in pegmatites. Prismatic crystals and their twins up to 20 mm ("in") across are known from Strontian, Scotland, UK. Crystals also come from St. Andreasberg and Oberstein, Germany; Kozakov, Czech Republic and Kongsberg, Norway.
Goosecreekite
ZEOLITE GROUP
CaAl$_2$Si$_3$O$_{10}$.5H$_2$O

MONOCLINIC •

Properties: C – white, colorless; S – white; L – vitreous; D – transparent to translucent; DE – 2.2; H – 4.5; CL B perfect; F – uneven to conchoidal; M – prismatic crystals, granular.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks. It is known from Goose Creek, Virginia, USA. Crystals up to 30 mm (1½ in) across found in the Pandulena Hill quarries, India.

Chabasite-Ca
ZEOLITE GROUP
(Ca$_{0.5}$,Na,K)Al$_4$Si$_8$O$_{24}$.12H$_2$O

TRIGONAL • • •

Properties: C – colorless, white, yellowish, pinkish, greenish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.2; H – 4.5; CL – imperfect; F – uneven to conchoidal; M – rhombohedral crystals and their twins, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks and pegmatites, along Alpine-type fissures and in hot springs, usually associated with calcite and other zeolites. Colorless and white interpenetration twins up to 60 mm (24 in) across, come from Faeroe Islands. Crystals are also known from Repice, Czech Republic; Berufjord, Iceland; Panvil, India; Maglovec, Slovakia and elsewhere.

Chabazite-Ca, Passboro, Nova Scotia, Canada

Goosecreekite, 25 mm xx, Maharashtra, India
10. Organic compounds

Whewellite

CaC₂O₄ • H₂O

MONOCLINIC

Properties: C – colorless, white, grayish; S – colorless; L – vitreous; D – transparent to translucent; DE - 2.2; H - 2.5; CL - good; F – conchoidal; M – prismatic crystals, commonly twinned.

Origin and occurrence: Whewellite is a rare hydrothermal mineral, mainly sedimentary in coal basins, associated with barite, ankerite and other minerals. Hydrothermal crystals up to 70 mm (2¾ in) long, come from U-bearing veins in PrRbram, Czech Republic. Similar crystals, up to 70 mm (2¾ in) long, occurred in Cavnic, Romania. Heart-shaped and butterfly twins, up to 100 mm (4 in) found in concretions near Kladno, Czech Republic. Similar specimens are known from Burgk near Dresden, Germany. Interesting flat radial aggregates found along cracks in clays in the vicinity of Most, Czech Republic.
Mellite

$\text{Mellite} \quad \text{Al}_3[\text{C}_6(\text{COO})_6] \cdot 18 \text{H}_2\text{O}$

TETRAGONAL

Properties: C - honey-yellow; S - white; L - resinous to vitreous; D - transparent to translucent; DE - 1.7; H - 2; CL - imperfect; F - conchoidal; M - dipyramidal crystals, granular; LU - blue.

Origin and occurrence: Secondary in the cracks in brown coal and lignite. The best specimens with crystals up to 40 mm (1.5 in) in size, come from Csordakut near Tatabanya, Hungary. Crystals, up to 10 mm (7/16 in) across, were found in Artern, Germany. Granular aggregates are known from Valchov, Czech Republic.

Evenkite

$\text{Evenkite} \quad \text{C}_{24}\text{H}_{50}$

MONOCLINIC

Properties: C - colorless to yellowish; S - colorless; L - waxy; D - translucent; DE - 0.9; H - 1; CL - good; M - pseudo-hexagonal tabular crystals; R - melts at 50°C (122°F).

Origin and occurrence: Probably secondary. It occurs within geodes near Evenki, Siberia, Russia. Also known from the cracks in altered andesite in Dubnik, Slovakia.

Fichtelite

$\text{Fichtelite} \quad \text{C}_{19}\text{H}_{24}$

MONOCLINIC

Properties: C - colorless to yellowish; S - colorless; L - vitreous; PS - transparent to translucent; DE - 1; H - 1; M - thin tabular crystals, scales, crystalline crusts.

Evenkite, 50 mm, Dubnik, Slovakia
Origin and occurrence: Secondary, typical mineral of peat-bogs. Its crystals are known from Borkovice near Sobeslav, Czech Republic; also known from Marktredwitz, Germany.

Amber
a mixture of hydrocarbons

AMORPHOUS

Properties: C - honey-yellow, yellow-brown, brown, red-brown, blue, green, black; S - white; L - resinous, dull; D - transparent to translucent, rare opaque; DE - 1,0-1,1; H - 2-2,5; CL - none; F - conchoidal; M - massive, irregular or drop-shaped aggregates, nodules and fragments; LU - light blue, yellow.

Origin and occurrence: Amber is a petrified resin from Tertiary and Mesozoic conifers, occurring rarely in sediments. Plant or insect remnants are sometimes found trapped in amber. The most famous localities are located along the southern coast of the Baltic Sea in Poland, Germany, Lithuania, Estonia, Latvia and Russia. The largest masses found weighed up to 10 kg (22 lb). Blue amber is known from the Dominican Republic. Other amber localities are found in Syria, Lebanon, Thailand, Vietnam, Canada and the USA.

Application: as a gemstone.
11. Rocks, meteorites and tektites

Rocks consist of minerals and often of fragments of other rocks and organic matter. Since rocks are mixtures, we cannot determine certain physical / chemical data (chemical formula, crystal system, hardness, etc.). Unlike minerals, some rocks form huge bodies which may cover several thousand km² so no single localities are shown in this book. Rocks are mainly used for building, in agriculture, and as raw materials for chemicals, ceramics and metals. Rocks are generally divided into three principal groups according to their origin:

1. Igneous rocks
2. Sedimentary rocks
3. Metamorphic rocks.

1. Igneous rocks

Properties: C - light gray, gray, white, brown, black, gray-green, pinkish, red-brown; D - opaque, rare transparent to translucent; L - dull, rare vitreous; DE - varies from 2.6 up to 3.8; F - uneven, rare conchoidal; M - coarse to fine grained, commonly massive aggregates, consisting of microscopic or larger grains or crystals of various minerals, up to several decimeters across, glass is also present rarely. Minerals in rocks usually have characteristic texture features, like graphic granite and others.

Origin and classification: Igneous rocks form at high temperature and commonly at high pressure in solidification of mainly silicate magma of variable composition. The mineral composition reflects a chemical composition of magma. Typical rock-forming minerals are quartz, orthoclase, microcline, plagioclase, biotite, muscovite, amphiboles, pyroxenes, olivine and nepheline. Rocks may solidify at various depths, according to which they are either intrusive, dyke or effusive. They can be grouped according to chemical composition (SiO₂ content):

- Felsite - granite, syenite, pegmatite, rhyolite, obsidian
- Intermediate - diorite, andesite basalt
- Basic - gabbro, basalt
- Ultrabasic - peridotite, varies from 1.0 up to about 2.8;
- F - uneven, sometimes conchoidal; M - coarse to fine grained and massive aggregates, consisting of grains or crystals, from microscopic to several dm in size, also of rock fragments and organic matter, banded textures are typical and some rocks are fossiliferous.

Orbicular granite, 150 mm, Sweden
Pegmatite, 65 mm, Dolní Bory, Czech Republic
Diabase, 65 mm, Rožany, Czech Republic
2. Sedimentary rocks

Properties: C – grey, brown, red-brown, black, green-grey, pinkish, white, yellow, often variable even within one rock, banding is typical; D – opaque, rare translucent; L – dull, sometimes vitreous, greasy or earthy; DE varies from 1.0 up to about 2.8; F – uneven, sometimes conchoidal; M – coarse to fine grained and massive aggregates, consisting of grains or crystals, ranging from microscopic to several dm in size, also of rock fragments and organic matter. Banded textures are typical and some rocks are fossiliferous.

Origin and classification: Sedimentary rocks originate under surface temperatures and pressures, as a result of sedimentation of mineral and rock fragments and organic matter of different size through the water and wind activity, or by precipitation from water solutions. Typical rock-forming minerals are quartz, calcite, dolomite, halite, clay minerals and others. According to their origins we can distinguish several groups of sedimentary rocks:

- clastic (consisting of rock fragments) – sandstone, conglomerate, quartzite, siltstone.
- organic (consisting mainly of organic matter) – limestone, coal.
- chemical (originating by precipitation from water solutions) – evaporites, travertine.
3. Metamorphic rocks

Properties: C - light gray, gray, brown, green, red-brown, black, green-gray, pinkish, white, sometimes variable within one rock. banding is relatively common; D - opaque; L - dull, rare vitreous; DE - varies from 2.5 to 4.8; F - uneven, rare conchoidal; M - coarse to fine-grained, platy, acicular and sometimes massive aggregates, consisting of grains and crystals, ranging from microscopic to several decimeters across. Typical are planar textures and foliation of some minerals.

Origin and classification: Metamorphic rocks originate under higher temperature and pressure during metamorphism of originally igneous or sedimentary rocks. The source of a thermal energy could be magma, then this type is called contact metamorphism, or the thermal source lies in the depth of the earth's crust and effects large areas, then this type is called regional metamorphism. During a process of metamorphism new minerals originate. Typical rock-forming metamorphic minerals are quartz, orthoclase, plagioclases, biotite, muscovite, amphiboles, pyroxenes, calcite, dolomite, sillimanite, kyanite, almandine, staurolite and serpentine.

Regionally metamorphosed rocks: serpentinite, mica schist, gneiss, marble.
Contact metamorphosed rocks: contact chert (porcelanite), skarn.
Iron meteorite, 50 mm, Sikhote-Alin, Russia

Properties: C - light gray, gray, gray-green, black; D - opaque; L - dull, metallic, rare vitreous; DE - varies from 3.0 to 7.3; F - uneven; M - coarse to fine-grained, sometimes massive aggregates, consisting of irregular grains of different minerals, ranging from microscopic to several cm across.

Origin and classification: Meteorites are igneous rocks formed in space. Most originate in the asteroid belt between Mars and Jupiter. They consist of various minerals and their chemical composition differs greatly. Typical rock-forming minerals in meteorites are olivine, pyroxenes, plagioclases, Fe and Ni alloys and sulfides, rarely also organic matter. Meteorites fall into four main groups, according to metallic iron and silicate component:

- **Iron meteorite;**
- **Siderolite;**
- **Chondrite;**
- **Achondrite;**

Occurrence: Meteorite falls are known throughout the world. The largest known iron meteorite, weighing approximately 60 tons, is located near the Hoba farm, Namibia. The largest known chondrite, weighing about 1 ton, fell in 1948 in Norton County, Nebraska, USA. Most meteorites that have been found recently come from large glaciers such as those of Antarctica and from desert in Namibia.
Tektites

Properties: C - light to dark green, yellow-green, brown-green, brown, green-gray, black; D - transparent, translucent to opaque; L - vitreous; DE - varies from 2.3 to 2.6; H - 6-7; F - conchoidal to uneven; M - massive irregular, drop-shaped or disc-shaped aggregates, irregular fragments, sometimes with typical sculptured surface.

Origin, classification and occurrence: Natural glasses, rich in SiO2, which formed as a result of rapid melting of surface rocks during impacts of large meteorites or comets. They are classified according to their age and occurrence (following sequence from the oldest to the youngest):
- Bediasites and georgianites - the USA, Mexico, Barbados, Cuba;
- Urengoitcs - Novyi Urengoi, Russia;
- Moldavites - southern Bohemia and western Moravia, Czech Republic;
- Ivorites - Ivory Coast;
- Irgisites - Zhamanshin, Russia;
- Indochinites, philippinites, javanites, bilitonites - southeastern Asia;
- Australites - Australia.

Application: some tektites, mainly moldavites, as gemstones.
Recommended literature

Porcelanite, 85 mm, Komář, Czech Republic
Agate, 50 mm, Záležnice, Czech Republic
Rejstfík

A
Acanthite 23
Actinolite 239
Adamite 154, 161
Adularia 263
Aegirine 235
Aenigmite 241
Aeschynite-(Ce) 107
Agalmatolite 249
Agate 88, 94, 95
Agridite 243
Aguljarite 24
Acrorite 227
Aktinite 56
Ajite 237
Akermanite 211
Ailaundite 34
Alabaster 147
Albite 265
Alexandrite 80
Algodonite 19
Albanite-(Ce) 215
Allargentum 19
Allophane 259
Almandine 196
Aloise 36
Aluminit 148
Alumohydrocalcite 128
Alunite 140
Alunogen 144
Amazonite 264
Amber 280, 283
Amylgyonite 158
Amsite 258
Amethyst 74, 88, 91
Analytite 271
Anapuiter 176
Anatase 104
Ancylite-(Ce) 128
Andaluster 201
Andersonite 129
Andulite 266
Andoverite 57
Andradite 198
Anglesite 137
Aphaniter 137
Akerite 117
Annabergite 178
Annie 252
Anotinite 266
Anthophyllite 238
Antigorite 258
Antimone 14
Antlerite 139
Apjohnite 145
Aquamarine 220
Aragonite 119
Argentine 23
Argenpyrite 32
Arptonit 25
Arcaesclorioite 166
Arsenic 14
Arsenidesiderite 188
Arsenolamprite 15
Arsenolite 81
Arsenopyrite 48
Arsenturnumite 169
ArSUite 127
Astrophylite 248
Atacamite 68
Atelinite 174
Augelite 164
Augite 233
Aurichalcite 123
Aurystinite 44
Austinite 190
Aventurine 88, 95
Azurite 122
B
Bahingtonite 245
Balan 16
Bariite 136, 138
Barytocalcite 121
Bastnasite-(Ce) 124
Baumhauerite 59
Bavenite 247
Baydonite 168
Bazzite 224
Beniofite 218
Berenite 181
Berschierite 53
Bertandite 212
Beryll 220
Beryl 220
Berylondite 155
Berschierite 156
Berglite 87
Betekhinite 57
Betapaladinite 153
Beudantite 141
Binlite 146
Bindheimite 86
Biotite 252
Bismuth 15
Bismuthinite 40
Bismuthite 126
Boltite 220, 223
Bobyrite 82
Bolelite 69
Bonacite 135
Bora 133
Borite 22
Boromuscovite 250
Bort 16
Botryogen 148
Boulangerie 62
Bournonite 56
Brazillanite 167
Breithauptite 33
Brochantite 139
Brookite 104
Braunite 109
Braunite 179
Buergerite 225
Bukovskite 185
Bustamite 242
C
cabernet 178
caferite 167
calaverite 42
calodenis 142
carnallite 68
carnotite 191
carnotite 38
carnotite 260
cerastite 138
cerastite 120
cinaharite 37
citrin 88
clausthalite 35
clevelandite 265
clintonite 254
colemanite 133
coloradoit 27
cookeit 256
copusite 149
cuquimbis 144
corderite 224
cornet 164
cormbit 164
cornedum 102
cossait 62
covellin 38
creedi 68
cristobalite 96
cristobalt 258
cubanite 31
cumengi 70
curi 111
cylindrit 37
cyrilot 187
A
auroite 243
akalovit 262
293
pyrop 196
pyrostilpnit 51
pyrrhotin 32
R
rammelsbergit 47
rathit 59
rausit 64
rhodizit 134
richecki 241
richterit 240
rockbridgeit 162
roachsmit 115
rodoniit 245
rosatit 33
rossmanit 230
rubelit 10
rubin 82
ruilit 190
rullen 88
R
S
sadrovec 147
safflorit 47
safir 82
sapphire 204
samarium 110
samsonit 52
sanidin 263
saponit 35
sardonyx 88
saratir 69
scorzalit 162
sedimentarhornit 266
sekaninat 224
sekadon 250
selon 17
selonit 147
seleniit 62
senarmontit 81
sepidol 260
seradon 242
serperit 149
sferiit 18, 26
sfeirakalait 114
schreiblin 151
siderit 114
silmarinit 201
siri 16
skolecit 273
skordit 175
skorol 226
skuterudit 68
slaveni kamen 265
smaragd 220
smirne 82
smithsoniit 113
sodalit 268
sokoloko 88
sperrylit 44
spessartinit 197
spinelit 76
spodumen 236
staninit 28
staurolit 204
stefaninit 54
steinmanninit 35
sternbergit 32
stibarsen 14
stibicosinit 86
stibiotantalit 107
stichtit 128
stibil-Ca 277
stoffdornman 255
stodit 152
strengit 174
stromeiserit 25
stromianit 120
staurolit 180
staurolit 8. 10
staurolit 150
stichit 231
sylvanit 41
sylvin 72
symplexis 178
T
tanzanit 216
tarnowitit 119
tefnit 195
tekst 289
teller 17
tellerit 104
tennantit 28
tenorit 76
tetradymit 41
tetradrit 29
thomsonit 206
thomsonit 273
thulit 216
thunzit 219
tirolit 184
titanit 206
titanowleginit 106
topaziit 192, 202
torbernit 189
tremolit 239
tridymit 96
tridymit 155
tridymit 253
triplit 160
tsvavorst 197
tschermgigt 146
tugrit 269
Eugaminit 191
tyglo ito 88, 95
tyrgs 182
ulcet 133
ulmolnit 46
umangit 22
uraninit 108
uranocircit 190
uranofon 211
usnit 228
V
valentininit 81
vanadinit 173
variscit 174
vanit 180
verdelit 227, 228
vermiculit 255
vesigniit 168
vesuvian 217
vestleyit 185
vijugit 217
villin 10
viridit 201
vivastn 176
vildlovit 119
W
wagnerit 159
wardit 187
wavelit 182
wologasit 126
whewellit 281
white-(CaFeMg) 186
whillockit 156
willemit 192
witherit 120
witichenit 53
wollastonit 241
wilsonit 153
wurtzt 30
X
xanthokon 51
xenonit-(Y) 157
xenonit 244
Z
zamnulat 88
zarait 127
zefjellit 260
zeunerit 191
zinkenit 61
zinkit 75
zinwaldlit 253
zippert 150
zirkon 199
zlato 11
zoitit 216
zwieselit 160
I
lelen" kvat 119
lelen 12
The Complete Encyclopedia of Minerals is a book for all the people, who are interested in the beautiful world of minerals. They can find here hundreds of photographs of beautiful crystals and crystal aggregates, together with a list of classic and new occurrences for each mineral species. Minerals are arranged into chapters according to the mineral system:

- Elements
- Sulfides
- Halides
- Oxides
- Carbonates
- Borates
- Sulphates
- Phosphates
- Silicates
- Organic compounds
- Rocks, meteorites and tektites